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I. INTRODUCTION

DUNE/LBNF constitutes an international multi-
decadal physics program for leading-edge neutrino sci-
ence and proton decay studies [1] and is expected to serve
as the flagship particle experiment based at Fermilab.

Whenever Fermilab has advanced the scale of its long-
baseline neutrino detectors, it has been advantageous to
increase proton power to the neutrino source commen-
surately. Fig. 1 shows a timeline for detector and accel-
erator milestones of the Fermilab long-baseline neutrino
program.

FIG. 1. Past and projected milestones in Fermilab long-
baseline neutrino program, as measured in detector mass and
120 GeV beam power at the Main Injector. [2]

The Fermilab Main Injector (MI) is expected to pro-
vide 1.2 MW at 120 GeV for the DUNE/LBNF program,
with the PIP-II upgrade [3]. However the DUNE/LBNF
science program also anticipates an upgrade of the Fer-
milab proton complex to 2.4 MW at 120 GeV in the Main
Injector. With the 2.4-MW upgrade, DUNE is competi-
tive with and complementary to other long-baseline neu-
trino experiments proposed on a similar timescale [4–6].
The upgrade to 2.4 MW beam power for a 120-GeV MI
cycle should also enable at least 2.15 MW for a 80-GeV
MI cycle and 2.0 MW for a 60-GeV MI cycle.

A scenario of achieving 2-MW beam power in the Fer-
milab Main Injector by replacing the Booster with a new
rapid-cycling synchrotron (RCS) was originally laid out
in the 2003 Proton Driver Study II (PD2) [7]. In 2010,
a superseding RCS proposal was laid out in the Project
X Initial Configuration Document 2 (ICD-2) [8]. In its
modern incarnation [9], the ICD-2 proposal uses a 2-GeV
upgrade of the PIP-II linac, features a cost-effective 8-
GeV RCS which ramps at 10 Hz, accumulates batches

(pulses) in the Recycler, and achieves a 2-MW Main In-
jector. A separate RCS scenario for a 2.4-MW Main In-
jector, featuring a 1-GeV linac, 15-Hz 11-GeV RCS, and
slip-stacking was considered in [2, 10].

There are a range of self-consistent RCS up-
grade scenarios compatible with a 2.4-MW upgrade
of LBNF/DUNE, and with technical challenges well-
considered. However the RCS scenarios differ in their
implications for beamlines at other energies, performance
requirements for the Main Injector, and compatibility
with further power upgrades. To refine the baseline
RCS upgrade path for a powerful science-driven proton
complex at Fermilab, the Fermilab Booster Replacement
Committee was formed with a science working group and
an accelerator working group in close collaboration.

In particular, the Booster Replacement Science Work-
shop [11] was held on May 19 2020 to explore the physics
potential enabled by the Booster Replacement upgrade.
Subsequently, an RCS Task Force was created at Fermi-
lab to construct a unified RCS scenario that drives the
ambitious science program for DUNE/LBNF, supports
a variety of compelling experiments on other beamlines,
and enables futures multi-MW power upgrades.

This work is ongoing, we provide an early outline here.

II. HIGH-POWER LBNF & MAIN INJECTOR

The Main Injector must be able to accommodate the
2.4 MW beam operation and should also be upgradeable
to higher beam power [12]. For Main Injector reliabil-
ity and upgradeability, a 2.4-MW upgrade that does not
rely on slip-stacking or the Fermilab Recycler ring could
be considered. Limiting the Main Injector intensity to
200e12 protons would also facilitate target design for the
2.4 MW LBNF program (see also [13]). That intensity
limit would also be compatible with a later upgrade path
to 4 MW Main Injector beam power by upgrading the
RF and magnet power to reduce the Main Injector ramp
rate [14].

For an 8 GeV RCS beam, much of the existing Booster-
MI transfer line infrastructure can be re-purposed. How-
ever by constructing a new 12 GeV transfer line to MI-10,
the Main Injector space-charge tune-spread and geomet-
ric emittance need not exceed that of PIP-II era Main
Injector operation.

An RCS with circumference up to 570 m would be ca-
pable of accumulating up to five batches (pulses) in the
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Main Injector. To limit the Main Injector intensity below
200e12 protons while also achieving the 2.4 MW bench-
mark at 120 GeV and 2.0 MW benchmark at 60 GeV,
the RCS must ramp at least 20 Hz (without a stacking
ring). For a 120 GeV the Main Injector cycle time is
1.4 s, determined by 1.2 s for the Main Injector ramp
and (5-1)/20 s to fill the Main Injector.

III. SCIENCE PROGRAM AT RCS BEAMLINE

The direct extraction beamline of the RCS should
provide at least 0.5 MW beam power with energies in
the range 8-16 GeV to support a leading-edge pulsed
power program. Supported experiments include a kaon
decay-at-rest program [15], dark matter search from in-
termediate energy protons [16], a proton irradiation fa-
cility [17], and any successor experiments to the current
short-baseline neutrino program [18]. In the scenario out-
lined in the section below, the RCS provides 1.15 MW
power at 12 GeV concurrently with 2.4 MW MI opera-
tion, with an intensity of 37e12 protons and ramp rate of
20 Hz.

At about 2 MW, the RCS beamline would be able to
serve as a frontend for a neutrino factory and associated
muon collider R&D program [19]. The RCS can be de-
signed to upgraded to a 30 Hz ramp rate; in the scenario
outlined below this achieves 2.1 MW at 12 GeV (using
all RCS cycles).

IV. RCS SCENARIO

The RCS parameters described in Table I fulfill the
requirements described in the previous two sections, to
enable 2.4 MW Main Injector operation and MW-class
12 GeV beamline program. The Main Injector program is
upgradeable to 4 MW and the 12-GeV beamline program
to 2 MW (but not both concurrently).

Parameter Value

RCS Intensity 37 e12

RCS Circumference 570 m

Number of RCS batches 5 batches

RCS Rep. Rate 20 Hz

RCS Norm. Emit. (95%) 24 mm mrad

RCS Injection Energy 2 GeV

RCS Extraction Energy 12 GeV

Avail. 12 GeV Power (120 GeV MI cycle) 1.15 MW

MI Intensity 185 e12

MI Cycle Time (120-GeV MI cycle) 1.4 s

MI Power (120-GeV MI cycle) 2.4 MW

TABLE I. Achievable RCS parameters that fulfill power re-
quirements for ambitious multi-faceted science program at
RCS beamline and DUNE/LBNF.

At 0.8 GeV the RCS would have an extreme space-
charge tune-shift of -0.64, but the tune-shift can be sup-
pressed down to -0.2 by upgrading the PIP-II linac energy
to 2 GeV. The RCS lattice design should also be super-
periodic to enhance dynamic aperture. A superperiodic
RCS lattice design would facilitate an RCS design which
can (optionally) be made compatible with integrable op-
tics or electron-lens technology [20–22].

To minimize uncontrolled losses and emittance growth,
the RCS would feature phase-space painted injec-
tion, modest space-charge, aggressive collimation, and
transition-free acceleration. The RCS can use a metal-
ized ceramic beampipe to prevent eddy-current heating.

V. 2 GEV PULSED PROTON PROGRAM

A 3 ms injection time is required to fill the RCS to
37e12 protons with the 2 mA PIP-II linac beam, which
presents two challenges. The first challenge is that the
bend field changes by 1-2% over the course of the injec-
tion time due to the 20-30 Hz resonant-circuit ramping
magnets. The second challenge is foil-stripping injection
for 3 ms at high-energy, which requires a long injection
straight, large beta functions and high-power beam colli-
mators to control foil temperature and beam scattering.

Retrofitting the PIP-II linac as a 5-10 mA pulsed linac
would alleviate both of these challenges with the multi-
ms fill time, but eliminate the possibility of a linac-based
physics program. The proposed linac-based physics pro-
gram includes a mu2e-like charged-lepton flavor violation
experiment [23, 24], low energy muon experiments [25],
and the REDTOP run-II/run-III program [26].

Alternatively, a 2 GeV storage ring would also alle-
viate both challenges associated with the multi-ms fill
time, but instead expand the range of science programs
that can be accommodated. The 2 GeV storage ring
could use permanent or DC-powered magnets, share the
same tunnel with the RCS, and have wider apertures and
longer straight sections. The 2 mA beam could be foil-
injected using several 120 Hz painting cycles and then
transferred to the RCS for immediate acceleration.

Although foil-stripping technology would be sufficient
to fulfill the requirements of the RCS program, the de-
velopment of an emerging laser-stripping technology [27]
may potentially allow for MW-class beam power to si-
multaneously be available for a 2 GeV pulsed proton pro-
gram. That new 2 GeV program would be comparable in
capability to a spallation neutron facility but could be de-
signed to serve a new particle physics program. The pro-
posed science program could include stopped pion source
experiments [28], PRISM-like charged-lepton flavor vio-
lation experiments [24], and/or neutron-antineutron os-
cillation experiments [29, 30]. Several proposed experi-
ments require high-power with short beam pulses, mak-
ing methods of pulse compression an important design
question.
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