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Machine Learning is a vast landscape of techniques, and application to accelerators is growing 

rapidly. We regret that we are unable to reference many excellent works and look forward to 

reading the other Letters of Interest that will certainly be submitted on this topic. 

 

Future HEP programs will require beam quality beyond state of the art in order to provide the 

needed luminosity for experiments. Additionally, in order to reduce backgrounds in the high 

intensity frontier [i] and utilize cost cutting technologies in the energy frontier [ii, iii] 

unprecedented precision and control of accelerators is required. Finally, the scale of proposed HEP 

flagship scientific facilities requires fiscally untenable operational and maintenance costs. All 

together, these next generation HEP machines are a radical shift in accelerator technology and 

scale that require new methods of design, study and control. Machine learning provides tools to 

push the design, study and control of accelerators beyond the state of the art. Deploying ML to 

increase the capabilities of existing accelerators is an essential, guiding step to the successful 

application of ML to the challenges of future accelerators. To encourage continued support, this 

Letter of Interest outlines how ML has begun to meet critical HEP needs by summarizing 

successful research employing machine learning in control, diagnostics and design and modeling 

of accelerators. 
 

Future discovery HEP accelerators will require machine control beyond the present state of the art 

to enable novel technologies with challenging alignment and placement tolerances [iv, v, vi, vii]. 

The goal is to improve performance by global control across the entire accelerator as opposed to 

the traditional technique of local control of a subset of parameters [viii]. Machine learning is 

ideally capable of handling high-dimensional, nonlinear and data intensive systems in real time, 

as is necessary for global control. This capability means that ML excels at solving problems 

involving systems that are impractical to model, such as compensating for tuning changes 

throughout an accelerator due to thermal effects [ix, x]. 

 

Luminosity of the proposed CLIC accelerator has been increased in simulation using ML based 

optimization to handle the high dimensional space of an entire family of magnets at once [xi]. 

Increased tuning performance and reduced downtime of the LCLS free-electron laser is routinely 

demonstrated by using ML to compensate for uncertainty in input beam parameters in matching 

quadrupole sections [xii]. Necessary RF efficiency improvements [RF roadmap] have been 

demonstrated using ML-based control of the temperature of RF systems [xiii, xiv]. These 

techniques are all directly applicable to HEP priority technologies like advanced phase space 

manipulation methods, such as emittance exchange [xv] and the challenges of beam combination 

in wakefield accelerators [xvi]. Current efforts seek to incorporate physics models directly into 

ML models to improve interpretability and robustness of ML models [xvii], in some cases, 

eliminating the need for prior data [xviii]. 

 



   
 

   
 

Maintaining luminosity through advanced machine control requires diagnostics capable of 

providing quantification of beam parameters on the order of 1 Hz or faster. Additionally, future 

colliders are expected to produce beam quality sufficient to destroy intercepting diagnostics that 

rely on material close to the beam [xix]. “Virtual diagnostics” are a class of diagnostic which use 

a machine learning model to enhance and replicate the output of a traditional, intercepting 

diagnostic. As one example, a deflecting cavity bunch length measurement system can be 

enhanced using coherent radiation to increase the resolution [xx] or increase the functional 

repetition rate [xxi]. Furthermore, replication of an existing diagnostic using a virtual diagnostic 

is necessary when use of the traditional diagnostic would interrupt beam delivery [xxii, xxiii, xxiv]. 

Finally, machine learning models can be used to determine beam parameters from radiation 

interference patterns in real-time, [xxv, xxvi] providing non-intercepting beam measures at 

repetition rates relevant for machine control. 

 

The next generation of linear colliders are designed at the limit of longitudinal and transverse beam 

focusing technologies. Development of beyond state-of-the-art accelerator technology will require 

incorporation of nonlinear and collective effects into design processes. “Surrogate models” (SM) 

based on machine learning can be used to increase simulation capacity for iterative tasks [xxvii] 

and to find novel solutions in high-dimensional spaces to meet collider needs. For example, it was 

demonstrated in [xxviii] that applying Bayesian optimization to a plasma accelerator enabled 

unexpected physics relationships to be uncovered. Similarly, reinforcement learning has been used 

to discover a counter-intuitive undulator taper profile that doubled the pulse energy of the LCLS 

X-ray laser [xxix]. 

 

Early results have demonstrated the promise of using ML techniques to meet critical HEP goals. 

These early results were enabled by the many tools that have been developed in the past decade 

for implementing ML in a manner that is fast and efficient. Beyond meeting traditional HEP goals, 

application of ML to physical systems requires research that addresses general challenges of 

uncertainty quantification to guide data fusion, safety boundaries for machine protection and 

behavior interpretation to understand how to improve control. Meeting these challenges requires 

dedicated efforts aimed at current HEP operational and design interests while developing 

knowhow and experience to meet future HEP goals. Concerted efforts beyond HEP with agencies 

that employ accelerators, such as BES and Nuclear Physics, to enhance capacity and generate 

robust solutions should be encouraged. 
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