Development of MgB2 Coated Superconducting Cavities

Tsuyoshi Tajima, Los Alamos National Laboratory

Introduction

Niobium superconducting cavities are the baseline accelerating structure for the International Linear Collider (ILC) with a design accelerating gradient E_{acc} of 31.5 MV/m. The theoretical limit of E_{acc} is derived from superheating surface magnetic field (B_{sh}) and Table 1 shows the expected B_{sh} and corresponding maximum E_{acc} of Nb, Nb₃Sn and MgB₂ for the cavities with $B_{peak}/E_{acc} = 4 \text{ mT/(MV/m)}$, a typical number for electron accelerators. As one can see, Nb₃Sn and MgB₂ have a potential to raise the achievable accelerating gradient significantly in the future. This table includes the number at 20 K for MgB₂ since the transition temperature for MgB₂ is ~39 K and it can possibly be operated at 20-25 K with cryocoolers. Nb₃Sn has been studied for decades and the techniques to get a high-quality film on the interior cavity surface have made excellent advances in recent years [1]. Regarding MgB₂, it was discovered to be superconductive in 2001 and its RF properties have been studied using small flat samples with favorable results [2]. Also, some attempts to coat small cavities up to 3 GHz have been made in the last few years. We propose to investigate the development of techniques to coat MgB₂ on cavities for the future HEP accelerators. They represent an important approach to improve the efficiency and cost of operation of next generation SRF cavities.

Table 1: Thermodynamic critical field (B _c), superheating field (B _{sh}) and corresponding
accelerating gradient for Nb, Nb ₃ Sn and MgB ₂ . The ratio B_{sh}/B_c is from the theory in [3] except
for Nb.

Material	B _c [mT]	B _{sh} /B _c	B _{sh} [mT]	Corresponding Accelerating Gradient ^{*1} [MV/m]
Nb at 2 K	191	1.2	229	57
Nb₃Sn at 2 K	529	0.842	445	111
Nb₃Sn at 4 K	509	0.828	421	105
Nb₃Sn at 10 K	373	0.784	292	73
MgB ₂ at 2 K	433	0.845	366	92
MgB ₂ at 4 K	429	0.842	361	90
MgB ₂ at 10 K	405	0.823	333	83
MgB ₂ at 20 K	320	0.789	252	63

^{*1}Assuming 4 mT/(MV/m), which is typical for an electron accelerator.

Current situation on the MgB2 coating development

In the last few years, Temple University has been a major player in terms of the effort to develop the technique to coat MgB₂ on the cavity interior surfaces [4 - 6]. They have been developing a

technique based on the hybrid physical chemical vapor deposition (HPCVD) that has been well known to produce a high-quality film. They have developed a system to coat a 3 GHz single-cell cavity and started to coat a cavity recently. ANL has been working on a technique using atomic layer deposition (ALD), which is known to be one of the best techniques for conformal coating of complicated 3D structures [7]. LANL has been developing a 2-step technique, e.g., coating of B layer with CVD in the first step and react it with Mg vapor in the second step [2, 8]. Unfortunately, all these efforts have been very slow due to insufficient funding.

Goals in the next 5 and 10 years

The above mentioned 3 techniques should move forward for the following reasons. 1) HPCVD has been known to give a high-quality film and most advanced so far, 2) ALD will be more appropriate to coat complicated structures such as a normal-conducting copper high-gradient structure and low- β cavities, and 3) 2-step technique may be better than HPCVD for a simple elliptical cavity once the technique is optimized due to its simplicity leading to better uniformity and reliability.

The goals in the next 5 years include 1) parameter optimization for each technique, 2) coating of 1.3 GHz Nb or Cu single-cell cavity and test them, and 3) identify issues, address them and demonstrate the benefits of MgB₂ cavity.

Assuming these goals are accomplished in the first 5 years, the goals in the following 5 years will be 1) design and develop a coating system for a multi-cell cavity such as the ILC 9-cell cavity, 2) carry out parameter optimizations for high-quality uniform coating using coupons attached to each cell, 3) coat multi-cell cavities and test them, 4) identify issues and address them, and 5) produce MgB₂ coated cavities that are superior to Nb cavities and possibly to Nb₃Sn cavities.

Additionally, exploring the idea of coating films that are thinner than its penetration depth to raise the achievable surface magnetic field due to the fact that B_{sh} rises in such a film [9 - 11] should be pursued as well.

References

- [1] Matthias Liepe, "Superconducting RF for the Future: Is Nb₃Sn ready for next-generation accelerators?" invited talk at the 10th International Particle Accelerator Conference (IPAC2019), Melbourne, Australia, 19-24 May 2019. http://accelconf.web.cern.ch/ipac2019/talks/tuxplm1 talk.pdf
- [2] T. Tajima, L. Civale, D.J. Devlin, R.K. Schulze, I.O. Usov, G.C. Martinez, "Status of MgB₂ Coating Studies for SRF Applications," Invited Talk at the 16th International Conference on RF Superconductivity (SRF2013), Paris, France, 23-27 September 2013. Proceedings p. 777. http://accelconf.web.cern.ch/AccelConf/SRF2013/papers/weiob01.pdf

- [3] G. Catelani and James P. Sethna, "Temperature dependence of the superheating field for superconductors in the high-κ London limit," Phys. Rev. B78 (2008) 224509. http://dx.doi.org/10.1103/PhysRevB.78.224509
- [4] M.A. Wolak et al., "Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition," Phys. Rev. ST-AB 17 (2014) 012001. http://dx.doi.org/10.1103/PhysRevSTAB.17.012001
- [5] Wenura K. Withanage et al., "Magnesium diboride on inner wall of copper tube: A test case for superconducting radio frequency cavities," Phys. Rev. ST-AB 20 (2017) 102002. https://doi.org/10.1103/PhysRevAccelBeams.20.102002
- [6] Xin Guo et al., "Fabrication and radio frequency properties of 3-GHz superconducting radio frequency cavities coated with MgB₂" unpublished, 2020.
- [7] A. Nassiri, private communication, June 2020.
- [8] T. Tajima, L. Civale, R.K. Schulze, "Research on MgB₂ at LANL for the Application to SRF Structures," Proc. SRF2015, Whistler, BC, Canada, p. 700. http://accelconf.web.cern.ch/AccelConf/SRF2015/papers/tupb053.pdf
- [9] A. Gurevich, "Enhancement of rf breakdown field of superconductors by multilayer coating," Appl. Phys. Lett. 88 (2006) 012511. http://dx.doi.org/10.1063/1.2162264
- [10] Teng Tan, M.A. Wolak, X.X. Xi, T. Tajima & L. Civale, "Magnesium diboride coated bulk niobium: a new approach to higher accelerating gradient," Scientific Reports 6 (2016) 35879. https://www.nature.com/articles/srep35879
- [11] T. Junginger et al., "Superheating in coated niobium," Supercond. Sci. Technol. 30 (2017) 125012. https://doi.org/10.1088/1361-6668/aa8e3a