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Abstract: ​(maximum 200 words) 
Bubble chambers are outstanding instruments for dark matter searches with sensitivity to            
numerous dark matter-nucleon couplings while maintaining low inherent sensitivity to          
electron-recoils from background radiation. The PICO collaboration has pushed the forefront of            
spin-dependent sensitivity in operating several generations of ever larger bubble chambers. The            
first components of the ton-scale PICO-500 detector are currently under construction. PICO is             
interested in developing this inexpensive and reliable technology to allow 50t scale detectors that              
will exceed the sensitivity to spin-dependent dark-matter/nucleon couplings that other targets can            
attain due to neutrino backgrounds. Bubble chambers also promise excellent versatility by            
allowing for changes of target material to determine coupling parameters of a dark matter              
candidate. 
Our proposed white paper will explore the key figures of merit and modest advances in detector                
development required to construct a 50-ton bubble chamber to search for dark matter. 
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The PICO collaboration and the COUPP collaboration before it have developed bubble chambers 
into a sensitive and cost-effective method for building ton-scale dark matter detectors.  The 
target material in any of these devices is a homogeneous fluid held in a superheated state by 
dropping its pressure below its vapour pressure at a given temperature. This state is maintained, 
for O(10) minutes or more in a low-background environment, until a particle interaction 
nucleates boiling. Within milliseconds the bubble grows to visible size and continues to grow 
until the chamber is compressed, driving the fluid back to a stable liquid state. 

While background mitigation for other dark matter detector technologies drives their cost, limits 
on the background radioactivities required for large bubble chambers have already been 
demonstrated with other technologies.  In common with the lowest background detectors in the 
world, such as liquid scintillator filled neutrino detectors, the active volume can be contained by 
a thin vessel and surrounded by a high-purity liquid as a hydraulic fluid which could also act as a 
veto.  Since in order to nucleate a bubble, O(keV) of energy needs to be deposited on the scale of 
10s of nanometers, bubble chambers are insensitive to low-ionizing electron-recoil backgrounds 
that limit the low-energy sensitivity of other experiments.  Since 2004, continuously superheated 
bubble chambers or their precursor technology, superheated droplet detectors, have produced 
world-leading limits in the search for spin-dependent dark matter-nucleus interactions [1-8]. 

In addition to their capability to discover the dark matter particle, bubble chambers provide an 
effective means to verify a discovery and explore the detailed properties of a dark matter particle. 
Bubble chambers can employ a variety of nuclear targets without adding systematic uncertainties 
in comparing the results of different detectors.  This ability to verify other claims has already 
been exploited with PICO-60 to directly exclude the possibility that iodine nuclear recoils 
produce the DAMA excess [6].  The PICO collaboration  has operated large detectors using 
various combinations of fluorine, carbon, and iodine, while tests have shown the feasibility of 
targets containing hydrogen, chlorine, and/or bromine that meet the criteria for use underground 
of being non-flammable and non-toxic.  Doping the detector can extend the technique’s 
sensitivity to other nuclei. 

 

Fig 1: Projected sensitivity of 
PICO-500.  PICO-500 would be 
sensitive to 3 solar ⁸B neutrinos 
after 6 mo. at a low (3.2 keV) 
threshold necessitating an increase 
in the threshold for a further 1 year 
of operation in this projection. 
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Fig 2: Rendering of PICO-500 inside its pressure 
vessel. 

Using the largest synthetic silica vessels that can be 
produced, PICO-500, with 340 kg of perfluorinated 
alkene target fluid is under construction at 
SNOLAB.  A background unique to previous PICO 
bubble chambers due to the formation of metastable 
particular-borne water droplets has been eliminated 
in this design.  Whereas previous chambers had used 
water as a buffer to isolate potential nucleation 
surfaces, all future chambers are using thermal 
gradients to cool and stabilize the fluid around these 
rough surfaces, seals, and fill valves.  

Scaling a one-year exposure of PICO-500 by 
approximately 3 orders of magnitude would allow a 
bubble chamber to detect scattering from 
atmospheric neutrinos.  This neutrino floor for 
fluorinated or hydrogenated targets provides the 
potential for many orders of magnitude greater 
sensitivity to spin-dependent interactions than can be 
provided by liquid noble gas detectors while 
providing comparable sensitivity to 
spin-independent interactions [9].  Multi-ton scale 
dark matter detectors are also sensitive to the early 
neutrinos from a galactic supernova [10]. 

A 50 ton detector operating for over 5 live-years at 
zero background could achieve sensitivity to atmospheric neutrinos while also reaching the 
demonstrated limit on the potential size of such a chamber.  This limit is defined by stringent 
requirements of order 5 nBq/cm² on the alpha radioactivity of the inner surface of the active fluid 
container.  Although bubbles from such decays are efficiently identified as a background, they 
contribute to the detector deadtime due to the need to arrest bubble growth and regain thermal 
equilibrium. 

PICO is interested in pursuing the required technological development and construction of a 
multi-ton scale bubble chamber.  Our white paper will outline the current goals of the PICO 
program, and the key drivers and development milestones, siting requirements, and outside 
expertise necessary in order to consider a scaled up detector.  These subjects include the 
development of low-background active fluid containers other than synthetic silica glass, efficient 
vetoing of muon-induced backgrounds, the physical design of a large detector, and the use of 
high-density liquid scintillators as hydraulic fluid. 
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