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Abstract: Dark matter with mass ~100 keV to 100 MeV and with spin-independent or spin-dependent
interactions with nuclei can scatter off and excite a molecule, which subsequently relaxes to its ground
state, emitting multiple infrared photons. These photons can be detected with an array of ultra-low-noise
Superconducting Nanostrip Single-Photon Detectors (SNSPDs). The SNSPDs can also be used directly as
the target to probe DM with mass ~100 keV to GeV that scatters off electrons in the SNSPDs and bosonic
DM with sub-eV masses that is absorbed in the SNSPDs. We detail the R&D needed to experimentally
realize this detection concept, which can probe orders of magnitude of unexplored dark matter parameter
space.
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Figure 1: DM detection concept schematic. Left: A DM particle interacts with a low-pressure, low-temperature molecular target,
such as carbon monoxide (CO), exciting a ro-vibrational molecular mode. The excited state relaxes to the ground state (bottom
panels), emitting several photons that are then absorbed by the SNSPDs. Right: The absorption and scattering of DM directly in
an SNSPD: (i) An SNSPD under voltage bias is kept close to some critical point. (ii) Energy from a DM interaction is absorbed,
driving a phase transition and leading to a sudden, measurable voltage change.

1 Physics Goals

The past few years have seen many dark matter (DM) direct-detection concepts emerge, see e.g. '~ and
references therein. Here we highlight the role played by a molecular gas target coupled to an array of ultra-
low-noise Superconducting Nanostrip Single-Photon Detectors (SNSPDs). Such a detector is sensitive to
several types of DM signals:

e DM with mass ~100 keV to 100 MeV can scatter off and excite a molecule to probe spin-independent and
spin-dependent interactions (Fig. 1 (left))”. The excited molecule relaxes to the ground state by emitting
multiple photons of energy (200 meV). The reach of the proposed experiment is shown in Fig. 2 (top)
for spin-independent scattering (for both heavy (top left) and light (top right) mediators).

e The SNSPDs can be used directly as the target (Fig. 1 right). DM with mass ~100 keV to GeV can scatter
off electrons in the SNSPDs, while DM with sub-eV masses can be absorbed in the SNSPDs®. This
deposits energy above the superconducting gap, breaking Cooper pairs in the SNSPDs and creating an
observable signal in the device. The reach for DM-electron scattering and for relic dark photon absorption
are shown in Fig. 2 in the bottom left and bottom right panels, respectively.

The low-energy-sensitivity threshold (<100 meV) of SNSPDs is a key enabler of our approach. The devel-
opment of unique wide-band low-energy SNSPDs would also open up a range of detection possibilities in,
e.g., DM science, imaging, and in enabling atmospheric spectroscopy of planets.

2 Required R&D, Status, and Plans

The near-term R&D goals of our proposed effort are to build a working prototype detector, before scaling it
up. This includes:

e Build a high-reflectivity cavity that contains the gas target and that can efficiently capture photons and
focus them onto SNSPDs; integrate different subsystems to make a working prototype.
e Build a large-area array of SNSPDs sensitive to 5-micron infrared photons w/ O(1) efficiency.
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Figure 2: Top: Expected reach assuming zero background events for DM spin-independent nuclear scattering off CO molecules at
a partial pressure of 5 mbar and a temperature of 55 K, for various tank volumes V' and photodetector areas Aget, a 1-year exposure,
and a heavy (light) mediator in the left (right) plot. Colored dashed (solid) curves correspond to CO cascade (cascade+co-quench)
photons (see’). The gray dotted curve corresponds to a cascade photon signal from an HSc gas at a pressure of 10 pbar and at a
temperature of 46 K. Current constraints are shown with gray shaded regions. Bottom: Expected reach of SNSPDs as simultaneous
‘target + sensor’ for DM-electron scattering in the SNSPD via an ultralight scalar mediator (left) and absorption of relic kinetically
mixed dark photon DM (right). The solid colored curves indicate 95% C.L. expected sensitivity through SNSPD targets (Al, WSi,
NDN or others), assuming no backgrounds and for kg-year exposure (unless otherwise stated) with various energy thresholds. For
clarity, 177 pg corresponds to a 10 by 10 cm-squared area of NbN at 4 nm thickness and a 50% fill factor, and 248 (124) meV
threshold corresponds to a 5 (10) um wavelength. Also shown are existing terrestrial and stellar constraints, including from a
prototype WSi SNSPD that was not designed for DM detection.

Operate the SNSPDs at sub-K temperatures while maintaining the molecular gas target at a colder tem-
perature (e.g., for CO at around 50 K).

Verify experimentally several key properties of the gas that are only known theoretically.

Characterize possible radioactive backgrounds events that can mimic a DM signal.

Derive the first bounds on data collected from the prototype.

Our proposal is complementary to already existing efforts, and is unique among other proposals. In par-
ticular, we will probe DM interactions with electrons for DM masses below ~1 MeV, a mass range that
is difficult to probe with other mature proposals that use semiconductor or noble liquid targets. We would
also, for the first time, probe spin-independent (spin-dependent) interactions between DM particles and nu-
clei for DM masses ~ 0.1 MeV — 1 MeV (~ 0.1 MeV — 100 MeV). Finally, our proposal will also probe
bosonic DM below 1 eV, which is below the silicon band gap and hence also inaccessible with other mature
proposals that rely on semiconductor or noble-liquid targets.
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