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Abstract: We present a discussion of a new detector technology, the “Snowball Chamber,” which is based
on the phase transition (of liquid to solid) for metastable fluids. A water-based supercooled detector has the
potential to move past the Neutrino Floor, and extend the reach of direct detection dark matter experiments
to low-mass WIMP candidates for both spin-dependent (on the proton) and spin-independent interactions.
The detector concept also has applications within coherent elastic neutrino-nucleus scattering experiments.
Some of the foreseeable, potential pitfalls are presented, as is a brief vision of an R&D program toward the
maturation of this technology.
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Introduction
The last several decades have seen the successful development of numerous technologies capable of per-

forming direct searches for particle-like dark matter [1, 2]. In general, the marquee experiments are each ma-
ture, reliable, and expected to reach their sensitivity goals; however, looking beyond the current generation,
the parameter space of dark matter candidates accessible with current technology is limited. Instrumenta-
tion thresholds and the kinematics of elastic scattering [3] constrain the lowest mass dark matter candidates
that can be studied [4]. The coherent elastic neutrino-nucleus scattering (CEνNS) of solar, atmospheric, and
diffuse galactic supernova neutrinos will soon become a background (the neutrino floor) that challenges the
reach to lower cross-sections, made even more difficult by the required scale of future experiments. Without
a new approach for detection technology, experimental searches will remain blind to important regions of pa-
rameter space. A new technology which pushes past the neutrino floor, extends sensitivities to low-mass dark
matter candidate particles [5], and is insensitive to the conventional backgrounds could open up these new
horizons. The path forward–envisioned here–builds upon the transformative “Snowball Chamber” technol-
ogy, a proton-rich, supercooled liquid water detector [6, 7]. A host of related measurements within neutrino
physics, utilizing the CEνNS interaction [8] on oxygen nuclei, and/or the potential of these detectors to track
electron interactions, is likewise open to such a technology.

A pure liquid can be placed into a state of “metastability” by controlling the temperature below the
freezing point (without freezing), so long as it is housed within a sufficiently clean and smooth container [9,
10], in order to avoid nucleation sites [11, 12]. Nucleation centers from particle interactions can be formed
which instigate the freezing of the liquid [13]. Freezing after supercooling produces a large and unmistakable
signature: a growing solid snowball, an enormous exothermic spike in temperature readings, and a change
in dielectric constant. Controlling the temperature and/or pressure allows one to control the critical radius
for nucleation, and thus the particle detection thresholds for both the energy and dE

dx [14], which provides
the ability to make the detector insensitive (and selective) to different particle interactions [15, 16]. As the
supercooled temperature is lowered, the detector response thresholds are correspondingly lowered [17].

Direct Searches for Particle-Like Dark Matter
A supercooled water detector can be tuned so that freezing only occurs for proton recoils, by virtue of

its sensitivity to the dE
dx of the particle track [18, 19]. Such a proton-rich detector would record orders of

magnitude fewer backgrounds from the neutrino floor than a conventional dark matter detector due to the
nearly vanishing weak charge of the proton. Furthermore, water is not an expensive medium, allowing for
the construction of very large-scale experiments. Sensitivities are envisioned down to at least O(10−43 cm2)
WIMP-nucleon cross-section (spin-independent), in only 1 kg-year. From the point of view of backgrounds,
a proton-rich detector will benefit from significant self-shielding of neutrons, which can be identified and
rejected when they inevitably multiple-scatter. It is important to point out, however, that the neutrino floor
for oxygen recoils is a potential source of background. Tuning the detector to be insensitive to oxygen nuclear
recoils could limit the low energy threshold achievable for the proton recoils. Thus, a full characterization
of the recoil thresholds and efficiencies for proton, oxygen, and e− recoils as a function of the temperature
and pressure [20, 21] is necessary. The intrinsic backgrounds, such as those from radon, are also not fully
known [22–24]. It is expected that these can be mitigated by purifying the water or by studying alternate
signal channels for discrimination (e.g., acoustic or crystal phonon signatures).

In addition to pushing into the low-cross-section portions of parameter space, this concept should also
be able to push to lower dark matter particle masses (∼200 MeV up to 20 GeV / c2). Supercooled liquids
should intrinsically possess lower energy thresholds than needed for ionization, for example [25, 26]. Water
supercooled to -20◦ to -40◦ C [27, 28] should achieve O(keV)-level thresholds, or below [29–31], although this
needs to be explored with dedicated measurements [32]. The light mass of the proton also kinematically favors
energy transfers in elastic scattering from lighter primary particles. While CEνNS backgrounds on oxygen
are a concern that is tightly coupled to the detector threshold, the background discrimination capability for
betas and gamma-rays, for instance, is unknown at lower thresholds, and needs to be characterized as well.

There is also the potential to make dramatic improvements in spin-dependent dark matter searches [33].
The coupling to an unpaired proton provides a fairly unique sensitivity to spin-dependent scattering on pro-
tons. Such searches do not benefit from the putative A2 coherent coupling for spin-independent interactions.
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This relative loss of sensitivity can be counteracted by the potential for very large deployments [34] with very
low proton recoil thresholds, which are feasible with modest purification and straightforward temperature
control. Such large deployments must, of course, take a modular, and potentially internationally distributed
form. This approach has the additional benefit of circumventing the negative impact of the long dead-time
associated with resetting the supercooled phase in each module, which could be further mitigated through a
droplet approach [28, 35, 36], use of microwaves, or other aggressive heating elements. A deployment above
ground may permit searches for SIMPs (Strongly Interacting Massive Particles) or similar exotica [37].

Neutrino Scattering Experiments
A supercooled liquid detector also has the potential to play a role in numerous neutrino experiments.

It is likely possible to reach operational conditions wherein such a detector will respond to oxygen nucleus
recoils [7]. The detector would thus be sensitive to the CEνNS interaction [8] but with a low-mass even-
even nucleus. Precision tests of the standard model cross-section (e.g., Non-standard Interactions) would
then be possible [38, 39], devoid of the complicating uncertainties due to the nuclear form factor, and the
less-well-predicted axial current contributions to neutrino cross-section. For homeland security applications,
a (compact) water CEνNS detector could detect reactor neutrinos [40]. Low-cost and modular designs
would enable searches for sterile neutrinos with a total neutral current disappearance experiment at multiple
baselines [41]. A large-scale world-wide deployment would also play an important role for supernova neutrino
burst detection. Lastly, a detector using deuterated water could be a viable technology for normalizing low-
energy neutrino fluxes from stopped-pion beams. Unfortunately, as it is only a threshold detector, each
supercooled liquid module provides no spectral information on the nuclear recoils. This deficiency could be
mitigated, however, through the use of a large modular array, with modules at slightly different thresholds,
or with doping (future work).

Future Work
The “Snowball Chamber” detector concept has the potential to make significant sensitivity gains for future

dark matter direct detection experiments, and to play an important role in several related areas of neutrino
physics. There is also a great deal of untapped potential that has yet to be completely explored. In addition
to proton and oxygen recoils, the search for dark matter scattering off electrons is an intriguing possibility.
Coupled with the low mass of the electron, the intrinsically low energy threshold of the supercooled detector
could allow searches for axion-like particles and bosonic super-WIMPs [42]. Due to intense hydrogen bonding
and other microphysics effects, water has the potential for encoding the direction of the recoils [43–45], which
could be used to further reject solar neutrino backgrounds for WIMP searches.

Hybrid detection schemes should also be explored for use in neutrino, dark matter, or calorimetry physics.
Incorporation of water-based liquid scintillator [46], or the doping of the water [47] with quantum dots [48],
may augment the freezing signal with a signature proportional to the energy deposited. Alternatively, the
Cherenkov signal could be recorded along with any coincident freezing event [49]. The pin-point nucleation
centers at the onset of a freezing event would provide high-position-resolution images for tracks, allowing for
a new directional neutron detector class. Finally, other supercooled liquids could also be explored, including
noble elements such as Xe and Ar [50]. Such targets provide opportunities to tune the target’s mass (A),
while also providing alternative signal channels (e.g. scintillation). All these uses, however, still suffer from
long thaw times. While still in its infancy, the supercooled liquid detector program detailed above should be
pursued in detail, as there is significant untapped potential in the technology in particle physics applications.

Fig. 1: Example of the
formation of two merg-
ing snowballs, likely to
be caused by the same
neutron. There are 150
ms in between frames.
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