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Abstract: In this Letter of Interest, we discuss the prospects for detecting boosted dark matter (BDM) in
DUNE-like experiments. BDM is a class of models in which there is a flux of (semi-)relstivistic dark matter,
in addition to the usual flux of non-relativistic relic dark matter. The signals arising from BDM can differ
significantly from those of elastically scattering relic DM, leading to new opportunities for searches at a
broader set of experiments. Large-volume neutrino detectors offer particularly interesting possibilities in
several scenarios. The detection capabilities of liquid argon time-projection chambers make them a leading
technology in the search for BDM.
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Introduction. The search for Weakly Interacting Massive Particle (WIMP) dark matter (DM) will continue
over the next decade via direct, indirect, and collider searches. While this remains a flagship piece of the
search for non-gravitational DM interactions, recently there has been substantial effort in exploring DM
candidates beyond the WIMP paradigm. Many of these new DM scenarios require new search strategies
beyond the conventional, WIMP-motivated ones. Among the well-motivated new possibilities, boosted dark
matter (BDM) has been proposed [1] which introduces the generic possibility that a small fraction of DM
produced at late times is (semi-)relativistic today. BDM is a phenomenon that can generically arise from
dark sector models with non-minimal structure, e.g., through DM annihilating to a lighter secondary dark
state, DM semi-annihilation or DM decay. We will elaborate some of these possibilities in the following.
In terms of phenomenology, the distinctive feature of BDM models is the energetic SM particles that are
typically produced due to the scattering of BDM on SM targets, which can be followed by secondary sig-
natures depending on the model details [2] and parameter region [3] . Because of the energetic nature of
the final states, neutrino detectors are found to be a particularly promising arena for BDM searches. In the
recent years, BDM has become an emerging area of interest for major neutrino experiments such as Super-
Kamiokande [4] and Deep Underground Neutrino Experiment (DUNE) [5,6], and has opened up a range of
new research directions for the coming years.

The defining feature of BDM models is that a component of dark matter is boosted with (semi-)relativistic
velocities generated by mechanisms discussed below. In most of the well-motivated parameter regions
and scenarios, energy deposits of the relativistic incoming BDM are typically much larger than those in
the interactions of standard non-relativistic WIMPs. This allows to probe BDM signals both in neutrino
experiments [1–18] such as DUNE, Super/Hyper-Kamiokande (SK/HK), IceCube Neutrino Observatory
(IceCube), and Short-Baseline Neutrino program (SBN), and in ton-scale dark matter direct detection ex-
periments [18–21]. In particular, the kiloton scale underground neutrino experiments enable the detection
of such astroparticles with low fluxes.

Sources of BDM. A typical channel of production of BDM is via annihilation processes due to unique
dark sector structures determining the relic abundance [22, 23], whereas other energetic light dark matter
productions via cosmic-ray acceleration [24–26], solar reflection [27], nucleon decay in the Sun [28], and
dark-sector decays [9, 10, 29, 30] are as well possible and associated phenomenological features would be
similar. The annihilation mechanisms include the assisted freeze-out mechanism in two-component scenar-
ios [22] and the semi-annihilation mechanism in the scenarios with a Z3 symmetry [23]. In both of these
cases, non-relativistic relic DM particles are annihilating, so the flux is dominantly generated in locations
with a high concentration of relic DM. These locations include the galactic center (GC) [1, 2] and dwarf
spheroidal galaxies [12], as well as the Sun [1, 7, 8] in cases where hadronic- and/or DM self-interactions
allow the Sun to capture relic DM particles.

Experimental signatures. BDM energetically scatters off targets inside the neutrino detectors. Depending
on the type of the recoiling target particle and transferred energy, we can categorize the BDM signals by
electron recoiling (e-recoil), nucleon recoiling (N -recoil), and deep/resonant inelastic scattering. Further,
the BDM models allowing “upscattering” processes of BDM or bremsstrahlung of a dark gauge boson result
in multi-particle signatures with a secondary vertex [2, 3].

Taking advantage of different experimental technologies, we can develop strategies specifically targeting
each BDM signal [18]. For example, as the momentum of BDM candidates is correlated with that of the
BDM source, a detector providing their directions will allow us to discriminate signal from background,
typically by neutral current scatterings of atmospheric neutrinos. Liquid-argon time-projection chambers,
such as DUNE [2,3,5,12,13,16–18], its protoype ProtoDUNE [14,15], and SBN [15], hold a great potential
for BDM searches, as discussed below. On the other hand, searches at other experiments, such as SK/HK [1,
2, 4, 7, 8, 12, 13, 18], IceCube [1, 8–11, 18], and various ton-scale dark matter detectors [18–21], can probe
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complementary parameter space.

Detection prospects at DUNE. The underground, multiple tens kiloton far detector of the DUNE experi-
ment is of particular interests in BDM search owing to its millimeter spatial resolution, calorimetry, and the
detection threshold of a few tens of MeV kinetic energy for hadrons.

BDM interacting with electrons is expected to give rise to a relatively clean signature, i.e., an electron
recoil, so some of the earlier works were devoted to the sensitivity studies of such BDM at DUNE. Examples
include BDM from GC [12, 13] and dwarf galaxies [12] in the two-component BDM scenario and BDM
from the Sun [13] in the self-interacting BDM scenario. These studies showed the ability of DUNE to probe
parameter space of the associated models, e.g., maximum electron recoil energy vs. scattering cross section
of BDM off an electron and BDM mass vs. halo DM mass.

In the scenarios where BDM interacts predominantly with hadrons, the interactions include elastic scat-
tering yielding a recoiling nucleon, deep inelastic scattering yielding multi-hadron final states, and resonant
scattering producing excited baryons such as the ∆ baryons [18, 31]. The newly developed Monte-Carlo
(MC) based simulation [16, 31] offers the most accurate description of hadronic BDM interaction thus far.
Studies on a benchmark model can be found in Ref. [16], where it demonstrates that DUNE has leading
sensitivity in a significant range in the parameter space. In addition, more sophisticated models can be
probed applying these MC tools and the analysis method to complementary data sets from DUNE and other
neutrino and dark matter experiments.

In non-minimal models which allow “upscattering” of BDM, inelastic BDM (iBDM) [2], and dark-
strahlung [3], the experimental signature is enriched by the presence of multiple particles and a secondary
interaction vertex, in both cases of electron and hadron scatterings. Along with other BDM cases, the
high-resolution imaging capabilities of DUNE detector enable the detailed reconstruction of these unique
features, enhancing background rejection and resulting in sensitivity competitive with/complementary to
other experiments such as HK [18]. This potential has been already shown in Ref. [17].

Ongoing and future developments: To realize DUNE’s potential for BDM search, comprehensive scrutiny
of signal topology, background processes, and detector resolution is crucial. While e-recoil can be calcu-
lated analytically in the regime relevant to BDM, the hadronic interactions involve nuclear effects which
smear the signatures and complicate their topology. Better understanding on nuclear effects is therefore
relevant to the BDM search via hadronic interactions. Similar to other analyses, developments on data ac-
quisition/triggering, event reconstruction, detector calibration, and analysis techniques are all important to
maximize the sensitivity of BDM searches [17] and distinguish underlying model dynamics.

Summary: The idea of boosted dark matter is receiving increasing attention, as it provides an alternative
dark-sector scenario beyond WIMP and can be tested in various immediate and intermediate future exper-
iments. In terms of phenomenology, BDM signals represent the high recoil energy regime of possible DM
dynamics. This is in contrast to conventional DM direct detection searches for relic DM that are focused on
low recoil energy events. DUNE, a next-generation neutrino experiment, has a great potential in the search
for BDM signals, allowing for various physics opportunities within BDM. Therefore, dedicated investigation
of BDM signal sensitivities and development of related physics tools for DUNE will be important aspects
of the neutrino physics and the cosmic-frontier physics programs in the next decade and beyond.
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