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Neutron yield in (α, n)-reactions in rare-event searches
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Abstract: Calculations of (α, n) yields, neutron spectra, and correlated γ-rays are essential to understand-
ing backgrounds in rare-event studies, like dark matter and neutrino experiments, and for nuclear astro-
physics. This Letter discusses plans for a program to improve the accuracy of the estimates of (α, n)-induced
backgrounds in astroparticle physics experiments, including novel ways to measure (α, n) cross sections for
a variety of materials of interest. The planned research would provide a necessary ingredient for establishing
the sensitivity of next-generation physics experiments with keV–MeV measurements.
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1 Motivation and goals

Accurate estimates of (α, n) neutron production rates, energy spectra, and correlated γ-rays are fundamental
to understanding backgrounds in future rare-event studies, such as dark matter and neutrino experiments.
Neutrons are highly penetrating, and neutron-induced nuclear recoils can pose irreducible backgrounds to
dark matter searches1–13. Low-energy neutrino experiments also suffer from neutron backgrounds due to (1)
γ-rays, produced when neutrons capture on detector materials, creating signals in the energy region of inter-
est, (2) delayed coincidences between neutron-induced nuclear recoils and these γ-rays mimicking a poten-
tial neutrino signal, or (3) neutrons activating β-decaying nuclei14–26. The low-energy physics (<10MeV)
programs in future neutrino experiments like DUNE are affected by (n, γ) reactions, as well27–29.

Extensive assay campaigns are often performed to determine the radiopurity of detector components
and the corresponding neutron backgrounds in an experiment, and to design low-background materials30–35.
Neutron fluxes are computed based on these assays with software like NeuCBOT36, SaG4n37, SOURCES38

(updated with extended libraries as described, for example, in Refs.11,39; now also available within ORI-
GEN40), and NEDIS41, which combine stopping power calculations with (α, n) cross sections, either from
measurements or from nuclear model codes like EMPIRE42 or TALYS43. Significant uncertainties in (α, n)
yields ultimately limit the ability to constrain radiogenic neutron background predictions in large experi-
ments39,44,45. These uncertainties, often of O(10%) to O(100%), largely stem from nuclear model uncer-
tainties, missing or highly uncertain cross section measurements (especially for branching ratios to excited
final states), and significant disagreements between similar measurements. These differences may some-
times be explained by different models and experimental corrections while interpreting measurements or by
differences between setups. For future low-backgrounds experiments to reach their ultimate sensitivities,
these neutron-induced backgrounds must be better understood.

The goal of this Letter is to unite nuclear and particle physicists interested in (α, n) reactions, including
(α, nγ), in order to improve (α, n) yield and neutron spectrum calculations and to take new measurements
that further this goal. Planning for the activities discussed in this Letter initiated at a topical meeting held in
Madrid on November 201946. Our goals are to: (1) sytematically compare, benchmark, and verify existing
(α, n) reaction codes, (2) create a common repository of cross sections, in different formats, which allows
their use by different codes, (3) define a common approach to uncertainties, with a consistent treatment
of experiment and model parameters, (4) investigate the impact of model parameters on comparisons of
(α, n) calculations and measurements, (5) unify (α, n) yield calculations and uncertainty estimates across
experiments, (6) plan and execute a program for measuring key (α, n) reactions for the intended applications.

In addition to their use in low-background experiments, (α, n) yields are important for nuclear physics47–49,
nuclear astrophysics50–55 and nuclear energy-related applications56–60. They are also used in neutron safety
assessments61 and nuclear safeguards62.

2 Improving the interpretation of existing data

Experimental measurements of (α, n) cross sections are available in the EXFOR database63,64. Uncertainties
O(10%) or more are common, and different measurements of the same cross section often significantly
disagree65,66. Beyond these uncertainties, experimental data exist only for a limited number of isotopes, and
nuclear models are required for the remainder. There are two main sets of evaluated (α, n) cross section
libraries available: (1) JENDL-AN-2005, an evaluated experimental nuclear data library with cross sections
available for a limited number of isotopes67, and (2) the TENDL libraries68 (latest release is TENDL-
201969), generated for virtually all isotopes using the TALYS nuclear model-based simulation code.
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Measurements of (α, n) cross sections exist beyond those included in the JENDL library and EXFOR
database, such as those compiled in70 and the measurements in71–74, though some important isotopes still
lack data. TALYS43 can calculate cross sections for transitions to different final states, as well as the en-
ergy distributions of emitted neutrons. EMPIRE42 can also calculate cross sections and branching ratios
to excited states. Both codes rely on parameterized nuclear models to describe reactions of interest, tuned
to available experimental data. For many isotopes, significant difference exists between measurements,
evaluated cross section libraries, and calculations performed by these codes39.

Improving the accuracy to which (α, n) and (α, nγ) calculations can be performed requires the following
actions: (1) identify the highest priority targets for different applications, (2) begin a nuclear data evalua-
tion program, starting with existing data not currently covered by other evaluations, with the goal to release
a comprehensive library of evaluated cross sections that will be kept up-to-date, (3) improve and bench-
mark (α, n) codes, with a full and consistent evaluation of uncertainties, and add (α, nγ) yields, and (4)
launch an experimental program to measure nuclides and materials for which there is currently insufficient
or inaccurate data, with dedicated infrastructure and new detectors and beam facilities as needed.

3 Performing new measurements

Due to limitations in the available data, new measurements are needed to fill gaps in our current knowledge.
These measurements are needed to resolve conflicts in the current data, determine neutron yields to higher
precision and for more isotopes, and to measure partial cross sections to excited final states.

Accomplishing these goals requires samples with well-controlled compositions, α beams reaching en-
ergies up to ∼10MeV, and detectors with fast timing response, energy and angular resolution, electronic
and nuclear recoil discrimination, and a high neutron tagging efficiency with minimal energy dependence.
Recent advances in neutron detection and photon detection technologies, such as cheap and highly effi-
cient silicon photomultipliers, have made it possible to design detectors that excel at the desired goals,
and advances in purification and assay techniques make it possible to create samples with well-controlled
compositions.

A list of high-priority isotopes is currently being developed, and measurements of (α, n) cross sections
on these targets are being planned; contributions from other interested groups would also be welcomed.
Several facilities have been identified where suitable accelerators can be used for these measurements. Can-
didate facilities include the Institute for Structure and Nuclear Astrophysics (ISNAP) at University of Notre
Dame, the Michigan Ion Beam Laboratory at University of Michigan, the National Superconducting Cy-
clotron Laboratory (NSCL) at Michigan State University, the John D. Fox Laboratory at Florida State Uni-
versity, the Edwards Accelerator Laboratory at Ohio State University, the Tandem Laboratory at TUNL, and
the Laboratorio Acelerador Van de Graaf at Universidad Nacional Autónoma de México in Mexico City,
among others. Opportunities to collaborate with European facilities are being explored, as well. Further
details of this experimental program are still under development.

4 Conclusions

Understanding (α, n) yields is essential for low-background experiments, and improving (α, n) yield cal-
culations will also benefit nuclear physics, nuclear astrophysics, and nuclear energy. A program is being
developed to improve (α, n) yield calculations, including an evaluation and a full and consistent treatment
of uncertainties in current data, and to take additional measurements to strengthen such calculations.
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