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Abstract:
Just as the Standard Model has a wealth of particle content, Dark Matter (DM) may reside in a com-

plicated Dark Sector comprising a number of new particles. We propose to study the joint sensitivity of
two different detector technologies, in particular to Dark Sectors in which multiple species can contribute to
the DM density today. Kinetic Inductance Detector (KID) technology, currently in development for CMB
polarization measurements, can also be used to search for polarized photons from the conversion of meV-
scale cosmic axions in a strong magnetic field. Meanwhile, low-threshold Charge Coupled Devices (CCDs)
have demonstrated sensitivity to ionization signals from the absorption of eV-scale dark photons. In models
which give rise to both axion DM and dark photon DM, such as the recently proposed ‘Dark Axion Portal’,
both technologies can be used to simultaneously shed light on the Dark Sector. We motivate a thorough ex-
ploration of the parameter space of such models, which can ultimately be constrained using both KID-based
and CCD-based detectors.
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Introduction

Motivated by the complexity of the Standard Model (SM) and the lack of a detection of Dark Matter (DM)
thus far, it is natural to consider that DM may reside in a more complicated Dark Sector 1. Such a Dark
Sector would be very weakly interacting, but is likely to be connected to the Standard Model by one or more
portals – interactions which allow for communication between the Dark and Visible Sectors.

The question of the particle content of the Dark Sector is, of course, an open one. The Strong CP problem
provides strong evidence for the existence of the QCD Axion2;3, which may also provide the Dark Matter in
the Universe4;5. Furthermore, axion-like particles are expected to arise naturally in ultraviolet completions
of the Standard Model6. At the same time, Dark Photons (or Hidden Photons) have been proposed to
explain a number of anomalies including measurements of (g − 2)µ

7;8, or simply as a reasonable extension
of the already-complicated Standard Model9. Depending on the mass and couplings, dark photons may also
contribute significantly to the DM relic abundance10.

Below, we outline two proposed technologies in the search for Axions and Dark Photons. We then
highlight a possible synergy between these two approaches, in models such as the ‘Dark Axion Portal’
which give rise to both axion and dark photon Dark Matter. We note that these detector technologies will
also be of interest to other topical groups such as quantum sensors (IF1) and photon detectors (IF2), since
the technologies we discuss enable highly efficient single-photon detection.

KIDs-based detectors

At ∼ 90 GHz (W band) and higher frequencies, kinetic inductance detector (KID) technology has been
demonstrated11;12 as an effective method to measure the CMB polarization due to its sensitivity, relatively
low cost, inherent multiplexing capabilities, and readout simplicity. Groups at IFCA (CSIC/UC), DICOM
(UC) and CAB (CSIC/INTA) in Spain are working in the development and calibration of dual-polarization
KID designs focusing on the W frequency band13. This technology can also be applied to the direct detection
of DM particles such as axions. The idea is to search for W-band polarized photons produced by the
conversion of cosmic axions in the presence of a magnetic field, via the Primakoff effect14. The generated
photons are expected to be totally (100%) polarized and, by directing them to the KID camera by means
of horn antennas coupled to the microwave resonators15, can be detected using a relatively small number
of detectors (compared to CMB applications for which tens of thousands of detectors are required). Using
this proposed method, the axion mass range that could be covered with KIDs is in the range O(0.1) meV to
several meV, with a sensitivity to axion-photon couplings smaller than about gaγγ < 5×10−12 GeV−1. QCD
axions at the lower end of this mass range may be produced with the correct relic abundance to account for
all of the DM16;17, while heavier meV-scale axions would instead be a sub-dominant DM particle5. Lower
masses down to the µeV-scale could be accessible using ultra-low noise high-electron-mobility transistor-
based radiometers, a different technology also used in the CMB field.

CCD-based detectors

Fully-depleted Charge Coupled Devices (CCDs) integrating a non-destructive repetitive charge amplifier
(skipper) have recently demonstrated sub-electron noise levels, enabling the search for low-mass particle-
like DM. This includes the search for ionization signals from the scattering of MeV-scale DM particles
with valence electrons18, giving unprecedented sensitivity to the DM-electron cross section σ̄e. In addition,
CCDs are sensitive to ionization signals from the absorption of dark photons A′ by electrons, with the rate
depending on the size of the mixing ε between the Dark and SM photons. The mass scale of interest is
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Figure 1: Projected sensitivity of CCD-based detectors to hidden sector Dark Matter. Left: DM-electron
scattering26. Right: Absorption of dark photons A′ (which is most relevant for this LoI)27.

mA′ & 1 eV (set by the silicon band gap energy of 1.1 eV). The CCDs of experiments such as DAMIC
have a very low dark current ≤ 10−21 A/cm2 that enable a threshold of 2 or 3 electrons (corresponding to
DM energy transfers as low as ∼ 3 eV)19;20. Understanding the origin of this dark current background and
reducing it are crucial to boosting the sensitivity of CCDs to DM. R&D in this direction includes the study of
silicon defects and impurities, as well as the fabrication of CCDs from silicon of the highest available purity.
Experiments such as SENSEI (100 g)21;22, expected to be ready during 2020/21 at SNOLAB, or DAMIC-M
(1 kg)23;24, to be installed at Modane during 2023, will use these sensors in the near future, with the final
idea being to develop a 10 kg detector (OSCURA) based on this technology25. The projected sensitivity of
CCD-based detectors to hidden sector DM is illustrated in Fig. 1.

Detecting Dark Sectors

A number of models have recently been proposed in which the Dark Sector includes both an axion-like
particle and a dark photon28–32, giving rise to a so-called ‘Dark Axion Portal’. In such models, both axions
and dark photons may contribute significantly to the present-day DM density29;33. This means that searches
for meV-scale axions with KIDs and searches for eV-scale dark photons with CCDs may simultaneously
shed light on the nature of the Dark Sector. This approach would be complementary to searches at beam-
dump experiments34 and other colliders. For example, LHC experiments such as CMS can be used to
constrain the axion couplings through precision measurements of the SM Higgs35 and to search for new
heavy colored particles coupled to a dark photon36.

We aim to investigate the joint sensitivity of KID- and CCD-based detectors to more complex Dark Sec-
tors. We propose a thorough exploration of the phenomenology of these models, including a study of the
relic abundance of multi-component axion-dark photon DM, as well as its possible observational signatures,
which may require dedicated searches29. We then aim to take advantage of experiments using both KIDs
and CCDs (along with established collider experiments such as CMS) to constrain the global parameter
space of these models. Finally, such joint approaches provide an excellent opportunity for cooperation and
collaboration between otherwise competing experimental efforts. For example, innovative and complemen-
tary cryogenic detection techniques based on Transition Edge Sensors (TES) are currently under discussion
with researchers from INMA (Zaragoza) and ICMAB (Barcelona) and may yield new opportunities for both
axion and dark photon searches.
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