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☑ (CF1) Dark Matter: Particle Like 
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☐ (CF3) Dark Matter: Cosmic Probes  
☐ (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe  
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☐ (CF7) Cosmic Probes of Fundamental Physics 
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IF01: Quantum Sensors 
NF3: BSM 
NF10: Neutrino Detectors 
UF3: Underground Detectors 
UF2: Underground Facilities for Cosmic Frontier 
 
Contact Information: 
Sunil Golwala (California Institute of Technology) [golwala@caltech.edu] 
Collaboration: SuperCDMS  
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Abstract:  
The SuperCDMS Collaboration seeks to build on the foundation laid by the SuperCDMS             
SNOLAB Experiment to undertake searches for potential dark matter (DM) candidates in the < 5               
GeV mass range as well as to conduct other searches for new physics. A coherent technical                
R&D plan will enable the improvements in backgrounds and detector performance required to             
achieve these compelling science goals. There are many opportunities for collaboration with US             
and international groups. This program promises rich science from the SuperCDMS SNOLAB            
facility for many years after the completion of the in-construction SuperCDMS SNOLAB            
experiment. 
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SuperCDMS SNOLAB Experiment and Facility Status (science runs 2023-2025) 
● 24 detectors of four types (iZIP1 and HV2, Ge (1.4 kg) and Si (0.6 kg)) to search for  

o nuclear recoils (NRs) from 0.5-5 GeV DM to within a decade of the neutrino floor3 

o electron recoils (ERs) from electron scattering of MeV-scale DM and/or absorption of 
eV-scale dark photons and/or axion-like particles (ALPs) 

● Detector operating temperature of 15 mK 
● Detectors installed in cryostat cans inside a class 100, low-radon cleanroom; cans installed 

in cryostat in class 2000 SNOLAB environment 
● Expected facility-limited background levels for current experiment3: 

o ER single-scatter: 
▪ 0.003-2 keV (HV): Ge 25/kg/keV/yr, Si 80/kg/keV/yr 
▪ 1-50 keV (iZIP): Ge 45/kg/keV/yr, Si 150/kg/keV/yr 

o NR single-scatter (1-50 keV, iZIP): Ge 3.2x10-3/kg/keV/yr, Si 2.3x10-3/kg/keV/yr 
2/3 of this is coherent elastic nuclear scattering of solar neutrinos, 2.5-4% is 
cosmogenic, and 8-10% is from the cavern environment 

● Current experiment3 expects to be limited by higher backgrounds from cosmogenic 
activation (3H, 32Si); 210Pb and dark counts potentially dominant near threshold 

● Ancillary science: non-standard interactions in coherent elastic solar neutrino-nucleus 
scattering, Bragg scattering of solar axions, millicharged lightly ionizing particles (LIPs) 

● The facility is amenable to a range of potential upgrades: 
o Detector count: more readout channels in same cryostat (currently 288 phonon, 48 

ionization); larger cryostat in existing, oversized shield (42 186 same size detectors)→  
o Detector temperature: modify cryostat (6 mK@source), new dilution refrigerator;  
o Backgrounds: reduced apparatus backgrounds; class 100, low-radon cleanroom for 

cryostat; enhanced shield; active external neutron veto 
 

Dark Matter Science Goals of Upgrade Program 
In the absence of a signal in the G2 experiments, upgrades on roughly 5, 10, and 15-year 
timescales would expand the nuclear-scattering DM parameter space explored: 
● Near-term: Mass reach down to ~0.05 GeV 
● Mid-term: Cross section reach to neutrino floor for masses 0.5-5 GeV 
● Long-term: Cross section and mass reach to neutrino floor for masses 0.05-1 GeV 
For electron-scattering DM, the program would yield staged progress toward ultimate goals of: 
● Enhanced mass reach for electron-scattering DM, potentially probing freeze-in and 

freeze-out models for masses 0.1 MeV≳   
● Enhanced mass reach for absorption of dark photons 0.1 eV and ALPs 0.5 eV.≳ ≳  
Detector technologies that do not rely on electronic excitations have unique long-term mass 
reach for all but ALPs.  Direct phonon production2 provides this reach for SuperCDMS. 
Discovery Scenarios: Should indications of DM emerge from G2 experiments, a number of 
exciting scenarios are possible.  Two examples: 
● A result in SuperCDMS SNOLAB, CRESST, DAMIC, or SENSEI implying NRs for MDM ≲

5 GeV, ERs for MDM 5 MeV, or dark photons or ALPs 10-15 eV≲ ≲   
Response: Test by increasing target mass and/or re-optimizing detector type distribution. 
Install modified detector designs with enhanced background rejection, better match to signal 
characteristics (e.g., lower threshold, targets with enhanced coupling).  

● A discovery in liquid noble experiments of nuclear recoils suggesting SI 10-46 cm2 at MDMσ ≈  
~ 10 GeV, midway between current and G2 LXe sensitivity 
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Response: A larger cryostat with Ge iZIPs (x10 mass) could test the SI hypothesis.  A Ge 
signal would narrow the range of allowed effective field theory operators while a Ge null 
result would disfavor operators to which it is particularly sensitive (e.g., neutron , |∆n|).L

→
 

 
Technical R&D to Enable the Science Goals 
To enable these science goals, the SuperCDMS Collaboration envisions a multi-staged, 
multi-pronged R&D plan.  Varying levels of technical maturity and cost provide near-term, 
mid-term, and long-term options.  Multiple lines of attack makes the program robust. 
● Detector Performance R&D 

o Reduce recoil energy threshold, including for direct phonon production unmediated by 
ejection of a nucleus or electron from its site4: improved phonon energy resolution  

o Extend NR discrimination to lower recoil energy: 
▪ Improve ionization resolution for ionization-yield-based discrimination 
▪ Improve phonon energy resolution to measure position distribution of 

Neganov-Trofimov-Luke5,6 (NTL) phonons at few-V (low) bias voltages 
▪ Improved understanding and reduction of impurity trapping and impact ionization7,8 in 

~100 V (high) bias voltage (HV, NTL-dominated) mode to reduce non-quantized event 
fraction9, enabling spectral NR discrimination and ER background reduction10 

o Reduce dark counts: Reduction of ionization leakage at high bias (HV mode)  
● Detector Configuration R&D:  

o Reduce surface and/or Compton backgrounds: active veto cryogenic detectors  
o New insulating or semiconducting target materials to 

▪ enhance sensitivity to sub-GeV nuclear-scattering DM and/or to ALP or dark photon 
absorption or dark-photon-mediated electron scattering; 

▪ reduce susceptibility to cosmogenic activation and/or HV dark counts 
o Reduce recoil energy threshold and/or improve ionization resolution: smaller detectors 

● Backgrounds R&D: 
o Reduce 210Pb surface backgrounds on detectors: sidewall etching, reduced exposure 

during fabrication, and eventually fabrication in a low-radon cleanroom 
o Reduce apparatus background: improved materials sourcing (e.g., for cabling) 
o Reduce 32Si backgrounds: isotopic enrichment 
o Reduce 3H backgrounds: crystal growth, crystal preparation, detector fabrication, and 

detector testing all underground 
 
Collaborative Opportunities 
Cooperation on parallel developments pursued by other groups will speed progress:  

● Ricochet/EDELWEISS: ionization resolution, underground crystal growth 
● MINER: phonon resolution, ionization leakage, phonon-based position information 
● SPICE/HERALD: phonon resolution, detection of cryogenic scintillation 
● DAMIC/SENSEI: 32Si reduction 
● GEMADARC: underground crystal growth, detector fabrication, and testing 
● ADMX, HAYSTAC: readout noise reaching/beyond standard quantum limit 

New opportunities for sharing the current or an expanded cryostat may materialize. 
 
White Paper: March/April 2021 
A white paper with detailed science projections and a reduced, optimized R&D plan to enable 
near-term (~2026), mid-term (~2030), and long-term (~2035) upgrades will be submitted. 
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