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The GAPS Experiment:
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Abstract:
Any dark matter signal in cosmic particle spectra continues to be obscured by large and uncertain as-

trophysical backgrounds. In the coming decade, the General Antiparticle Spectrometer (GAPS), which is
the first experiment optimized specifically for low-energy (<0.25 GeV/n) cosmic antinuclei, will begin its
Antarctic balloon program. Low-energy antideuterons provide a “smoking gun” signature of dark matter
annihilation or decay, essentially free of astrophysical background. Low-energy antiprotons are a vital part-
ner for this analysis, and low-energy antihelium could provide further discovery space for new physics. By
opening unique sensitivity to low-energy antiprotons, antideuterons, and antihelium, GAPS is poised to of-
fer a breakthrough in new physics searches using cosmic particles.
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Figure 1: Predicted GAPS sensitivity to antiprotons (upper
points) and antideuterons (lower bands) as a function of ki-
netic energy per nucleon. The anticipated GAPS antiproton
measurement1 after one flight is shown in comparison with the
GALPROP plain diffusion prediction2 and current spectra from
AMS-023, BESS-Polar I/II4;5, and PAMELA6. The anticipated
GAPS 3σ antideuteron discovery sensitivity7 after three flights
is shown in comparison with the predicted flux from 70 GeV
dark matter annihilating into bb̄ (consistent with the AMS-02
antiproton and Fermi gamma-ray signals8), as well as the pre-
dicted secondary and tertiary astrophysical flux. The width of
the predictions indicate uncertainty in coalescence momenta9;10.
Conservative propagation models are assumed. The current best
antideuteron limits are given by BESS11; the antideuteron sensi-
tivity of AMS-02 in its final-magnet configuration has not been
published, but will probe energies >0.25 GeV/n.

The coming decade is an exciting
time for searches for cosmic antinu-
clei, with experiments beginning to be
sensitive to viable dark matter models.
The General Antiparticle Spectrometer
(GAPS1;7;12, Figure 2) is the first ex-
periment optimized specifically for low-
energy (< 0.25 GeV/n) cosmic antipro-
tons, antideuterons, and antihelium as
messengers of new physics13;14. GAPS
is preparing for its initial Antarctic bal-
loon flight in late 2022, with at least
three flights anticipated in the coming
decade. The novel GAPS particle iden-
tification technique is based on exotic
atom capture and decay12;15. Com-
pared to conventional magnetic spec-
trometers such as AMS-02, this design
enables significantly larger instrument
acceptance and higher background rejec-
tion power, which are key to rare sig-
nals searches such as the hunt for cosmic
antideuterons or antihelium. Combined
with the low geomagnetic cutoff of the
Antarctic flight path, this novel design
also opens sensitivity to an energy range
below that of any other experiment.

The unique strength of a search for
low-energy antideuterons lies in their
ultra-low astrophysical background16–21.
Secondary or tertiary (background) an-
tideuterons are produced by cosmic-ray
protons or antiprotons impinging on the
interstellar medium. This conventional production is extraordinarily suppressed, as the incident cosmic-ray
spectrum is steeply falling with energy and high energies are needed to create both an antiproton and an-
tineutron in these fixed-target collisions. Moreover, the kinematics of these collisions impair the production
of antideuterons with low kinetic energy, so antideuterons below a few GeV/n are particularly rare.

A first-time detection of low-energy cosmic antideuterons would be an unambiguous signal of new
physics, opening a new field of cosmic-ray research and probing a variety of dark matter models that evade
or complement collider, direct, or other cosmic-ray searches. Figure 1 compares the astrophysical back-
ground to the flux expected from a standard WIMP, with mass and annihilation cross section that are consis-
tent with both the reported low-energy antiproton excess observed in AMS-02 and and the Galactic center
gamma-ray excess observed by Fermi8. This sensitivity extends to models of heavy WIMP (5-20 TeV)22

and TeV-scale pure-Wino dark matter23 with a Sommerfeld enhancement mechanism, which are motivated
by the long-standing high-energy positron excess observed by PAMELA and AMS-02. Also shown is a
Kaluza-Klein neutrino of extra-dimensional grand unified theories (LZP)18, which is another example of
non-supersymmetric dark matter. A decaying LSP gravitino,24 which cannot be seen by direct detection
experiments, would also produce a detectable flux. Of particular note, antideuterons explore hidden sector
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models, such as dark photons that evade direct detection and collider searches, via the hadronic decay of a
massive mediator25. Antideuteron searches thus probe models of new physics over a wide mass range that
cannot be resolved with other search methods.
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Figure 2: GAPS design, with a 10-layer (only two layers shown)
array of 1440 Si(Li) detectors26–31 surrounded by a large-area
plastic scintillator time-of-flight system32. The novel GAPS an-
tiparticle identification technique, based on exotic atom capture
and decay, combines measurements of the incident particle time-
of-flight, dE/dx, and total energy; exotic atom X-ray energies;
and nuclear annihilation product particle multiplicity.

The antideuteron formation and prop-
agation have around one order of mag-
nitude theoretical uncertainties.14. Up-
coming accelerator-based experiments
could give crucial constraints on mod-
els describing the formation of light
(anti)nuclei in hadronic interactions33;34,
which are currently the dominant source
of uncertainty. The uncertainty due
to Galactic propagation spans the dif-
ference between the conservative MED
and the optimistic MAX models.35, with
AMS-02 antiproton results favoring the
MAX scenario36. Despite these large
theoretical uncertainties, sensitive an-
tideuteron searches will be able to defini-
tively probe many dark matter scenarios.

Low-energy antiproton measurements
are an essential partner to these searches,
as any antideuteron detection must be
consistent with antiproton search results.
As shown in Figure 1, GAPS will pro-

vide a precision antiproton spectrum in an unprecedented energy range below that of any other instrument.
Since the antiproton spectrum from dark matter annihilations shifts towards lower energies with decreasing
dark matter mass, precision measurements of the low-energy antiproton spectrum offer new phase space for
probing light dark matter models and the existence of local primordial black holes1. Previous antiproton
results from PAMELA6;37, BESS5, and AMS-023 have provided leading sensitivity to dark matter models,
as well as astrophysical production and propagation scenarios17;38–41. The GAPS antiproton measurement
will also be essential to understand the propagation of all charged particles in the Galactic and Solar en-
vironments. The comparison of low-energy antiproton fluxes from GAPS and AMS-02, during the same
solar activity period and with different detection techniques, will reduce systematic uncertainties for future
measurements.

Recently, the AMS-02 collaboration has announced the observation of several candidate antihelium-
3 and antihelium-4 events42–44. Although antihelium arriving from antimatter-dominated regions of the
universe is already nearly excluded45;46, this announcement has prompted significant theoretical work on
the implications for dark matter models8;47–50 and light antinuclei formation51;52, and it certainly further
motivates the search for antideuterons. In the coming decade, confirmation or exclusion of an antihelium
signal using the complementary detection technique of GAPS will be essential, given the transformative
nature of such a claim.

The current generation of experiments sensitive to cosmic-ray antinuclei, including both GAPS and
AMS-02, are discovery experiments. Successor experiments will need to measure spectra with high statis-
tics. This is only possible with extended data taking and larger payloads. Therefore, the development of
reliable ultra-long duration balloon platforms with low-geomagnetic cutoff trajectories will directly benefit
the study of cosmic-ray antinuclei. At the same time, these flights serve as the technical proving ground for
large-scale space-based experiments for cosmic rays, e.g., on the Moon’s surface or at a Lagrange point.
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