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Abstract: Evidence suggests that the majority of the mass in the Universe is dark matter. Many promising
models hypothesize that dark matter is a particle that can annihilate or decay and produce secondary gamma
rays. Several searches have been performed by GeV and TeV gamma-ray experiments, none of which
have detected a definitive signal. The Southern Hemisphere is home to many key dark-matter targets, like
the dwarf galaxy Reticulum II and the Large Magellanic Cloud. So far, only a few Southern Hemisphere
targets have been observed by the current H.E.S.S. observatory due to its limited field-of-view. A wide-field-
of-view survey observatory, like the Southern Wide-field Gamma-ray Observatory (SWGO), is needed to
survey the many dark-matter targets in the Southern Hemisphere. We show that such an observatory would
produce competitive, if not the best, limits for dark matter from Galactic substructure targets with masses
from 100 GeV to several PeV.

∗This Letter contains excerpts and material from White Papers submitted for the Astro2020 Decadal Survey 1;2
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Astronomical observations suggest that the majority of mass in the Universe is composed of non-
baryonic dark matter3–5. There are several well-motivated theories that predict dark matter is a fundamental
particle such as a Weakly Interacting Massive Particle6. In these models, the dark matter annihilates or de-
cays, producing Standard Model particles that would be observed by astrophysical observatories. Typically,
the dark-matter interactions produce unstable particles that produce a spectrum of Standard Model particles,
including gamma rays (e.g., χχ→ bb̄).

If the dark matter has a mass well above the TeV scale, the only discovery space is astrophysical— these
particles would be well above achievable collider searches for dark matter and would have number densities
too low for direct-detection searches. However, with the high-dark-matter-density regions observed astro-
physically and the high-energy reach of astrophysical experiments, dark-matter masses much greater than
1 TeV can be probed. Dark matter clumps on subgalactic scales, producing substructure in the Galactic Halo.
These targets are promising for searches of gamma rays from particle-dark-matter interactions since they
are dark-matter rich and nearby. Specifically, dozens of dwarf galaxies and the Large and Small Magellanic
clouds are good dark-matter targets in the Southern Hemisphere.

We propose a next-generation gamma-ray observatory that will have the best sensitivity at high ener-
gies (>10 TeV). The Southern Wide-field Gamma-ray Observatory (SWGO)7;8 is planned to be located
in the Southern Hemisphere and have a sensitivity ∼ 10× better than the High-Altitude Water Cherenkov
(HAWC) Observatory9. Both detect radiation produced by relativistic particles in extensive air showers
caused by cosmic-ray and gamma-ray interactions in the atmosphere. These arrays have a wide field-of-
view and observe ∼ 2/3 of the sky every day with a near-100% duty cycle. They complement Imaging
Atmospheric Cherenkov Telescopes (IACTs), which have smaller fields-of-view. Therefore, SWGO would
observe several Southern Hemisphere dark-matter targets every day.

DES Dwarf Galaxies

LMC

SMC

Figure 1: HAWC skymap with the SWGO field-of-view overlaid. Shown are new targets avalible to SWGO.
The pink targets are new dwarf galaxies discovered by the Dark Energy Survey10. This assumes SWGO is
located at latitude 20◦ South

Dwarf spheroidal galaxies (dSphs) are some of the most dark-matter-dominated objects known. Dozens
are known to exist nearby in the Milky Way dark-matter halo. Given their proximity and low astrophysical
backgrounds, Milky Way dSphs are excellent targets for searching for gamma-ray emission from dark-matter
annihilation or decay. For example, HAWC has derived competitive limits on dark-matter annihilation and
decay using 14 dSphs with known dark-matter content11.
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Figure 2: (Left) Expected 95% confidence level dark-matter-annihilation cross-section upper limits in dSphs
with a 200,000 m2 water Cherenkov detector (WCD) (10 times the HAWC area, similar to SWGO). Also
shown are the observed dSph limits from VERITAS39, H.E.S.S.40, Fermi-LAT38, MAGIC41, and the ex-
pected limits from CTA42. (Right) Expected 95% confidence level dark-matter decay lifetime lower limits
for dark-matter decay in dSphs. Also shown are the observed dSph limits from VERITAS43, Fermi-LAT44,
and IceCube45.

Recent deep observations with wide-field optical imaging surveys have discovered 33 new ultra-faint
Milky Way satellites12–26, mostly in the Southern Hemisphere. These objects are potentially dark-matter-
dominated dSphs, but this needs to be confirmed with spectroscopic follow-up observations. Fifteen of the
new satellites have already been spectroscopically confirmed as dSphs19;26–37. These add to the existing 18
well-characterized dSphs known before these surveys38.

Figure 2 shows the expected improvement in the dark-matter annihilation and decay limits relative to
the current HAWC limits for a HAWC-like array with 10× better sensitivity in the Southern Hemisphere
and an increased number of dSphs. We assume the dark-matter amount and distribution in the new dSphs
matches that of the previously known dSphs. With the next generation of observations, we expect to be able
to improve the present limits by nearly an order of magnitude. We also expect such an array’s dSph searches
to be more sensitive than dSph searches from current and future IACTs like H.E.S.S. and CTA.

Additionally, with a survey instrument examining the sky every day, additional dSphs that haven’t been
discovered yet will have already been observed with the instrument’s full sensitivity. The Rubin Obser-
vatory46 will survey the Southern Hemisphere sky with unprecedented sensitivity and is expected to find
hundreds of new dSphs47. Legacy data from SWGO at these locations could easily and immediately be
analysed when new dSphs are found.

Two other promising Southern Hemisphere dark-matter targets are the Large (LMC) and Small (SMC)
Magellanic Clouds. The LMC is the largest Milky Way satellite and rich in dark matter. It also is likely on
its first in-fall, meaning it has not been tidally stripped by the galaxy and still contains most of the its initial
dark-matter density. The SMC is in a complicated orbit around the LMC, but also likely on its first in-fall
and therefore not tidally stripped. Though its dynamics are more complicated than the LMC, the SMC’s
rotations curves show that it is dark-matter dominated. Since it is extended by ∼ 10◦, a wide-field-of-view
observatory would uniquely observe the entire LMC dark-matter subhalo at TeV energies.
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