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Abstract: Significant effort has been put into developing haloscope-style detectors for the QCD axion, en-4

abling unprecedented sensitivities. We propose feasible light-shining-through-walls (LSW) experiments that5

can operate in tandem with these existing haloscope experiments and be integrated into future development6

plans.7
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1 Introduction9

Weakly Interacting Slim Particles, or WISPs, are natural consequences of solutions to problems with the10

Standard Model via the proposition of a new, spontaneously broken symmetry. In order to constitute some11

fraction of the observed dark matter density, these particles must be both cold and of low mass. Further, to12

account for the fact that no such candidates have been observed, these particles must be feebly interacting.13

Generally speaking, there are two forms of WISPy dark matter which can be detected through coupling14

to photons: axion-like particles (ALPs) and hidden sector photons (HSPs). The QCD axion is a uniquely15

compelling form of WISP because it both solves the strong CP problem and can be produced in sufficient16

quantities in the early universe to be a significant fraction of the dark matter1–3. The QCD axion mass is17

linked to its coupling via the symmetry-breaking scale fa providing a target range which has attracted several18

significant experimental efforts. The majority of experiments use the dark matter halo as a particle source19

as this provides a significant energy density. However, making this assumption introduces a vulnerability20

in the experiment, as it assumes knowledge of the dark matter composition and distribution. In an LSW21

search, the WISP is both generated and detected within the experiment, removing the model dependence of22

any results. In this LOI, we will outline LSW techniques targeting the mass range of existing QCD axions23

microwave resonance searches and comment on the extending the mass range.24

2 Microwave Haloscopes as LSW Experiments25

Any bright photon source can also be a HSP source. Furthermore, the addition of a magnetic field in26

the vicinity of such a source can facilitate the production of ALPs. Thus, if a high-powered microwave27

resonator is positioned next to a microwave detector there is some probability of detecting a WISP converting28

back to a photon4. The maximum probability of transmitting a photon from one cavity to another in an29

LSW experiment is proportional to the quality factor of the two resonators. In the 1 − 40 µeV mass range,30

axion dark matter haloscopes have become increasingly sensitive, with the ADMX collaboration achieving31

sensitivity to signals as low as 10−24 W5. These experiments present an opportunity to run a parallel LSW32

experiment passively, capitalizing on the investments already made in the detector. This search technique has33

already been demonstrated, with dedicated experiments having been performed at CERN6, The Cockcroft34

Institute7, Yale8, and The University of Western Australia9 and the ADMX collaboration10. Nevertheless, a35

concerted effort to run LSW experiments in parallel with operational haloscopes is currently lacking. Such36

an approach could exploit the sensitivity of axion searches to probe deeper into the HSP parameter space.37

A possible, simple design for such an experiment would be to use an RF generator, a power amplifier38

and a microwave resonator with a tuning mechanism to frequency-match the haloscope as the WISP emitter.39

Attention would need to be paid to leakage between the emitter and detector, but a suitably designed set40

of nested Faraday cages would be sufficient. Figure 1 shows the schematic of a simple LSW extension to41

the existing ADMX experiment with an emitter (quality factor of 104) powered by a 100 W source. The42

expected exclusion in the 1-2 GHz region beats previous dedicated results by greater than a decade. The43

layout in Figure 1 is sub-optimal due to the space required for the magnet coils separating the cavities,44

approximately 0.8 m. Another possibility is to make use of existing space above the haloscope cavities: for45

example, in previous incarnations of ADMX, a smaller prototype cavity known as sidecar has been operated46

in tandem with the main experiment. Such a cavity would significantly reduce the geometric reduction in47

signal while also benefiting from being within the magnetic field, enabling a simultaneous ALPs search.48

Finally, higher mass haloscopes targeting DFSZ axions are being designed with multiple, simultaneously-49

operated cavities neatly confined within the bore of existing magnets. It is a relatively simple operation to50

power one of these cavities to enable a LSW search between adjacent cavities.51
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Figure 1: Left: Exclusion plot showing the expected sensitivity of an HSP search running in parallel with the
ADMX 1-2 GHz run. The emitter is assumed to be a 104–Q cavity with equivalent geometry as the ADMX
detector cavity powered by a 100 W pump and placed on the perimeter of the magnet. Right: A schematic
of emitter cavity assembly. The emitter system is fully independent of the ADMX system allowing for such
a system to be retrofitted to existing experiments. The blue hashed area indicates components which would
be housed in the Faraday cage only requiring power through-puts.

3 Extended Mass Range52

One promising technique to extend the reach of LSW searches to higher masses is to leverage the high-53

Q of superconducting cavities which compensates for the effect of reduced volume and allows the stored54

energy for the emitter to be increased. Quality factors as high as 1010−1012 have been obtained 11 with such55

superconducting cavities. The challenge of operating superconducting cavities in high magnetic fields limits56

the use of this technique for detecting ALPs. One possible means of avoiding this issue and searching for low57

mass WISPs is described in this article12, which uses a gapped toroid and two superconducting rf cavities58

outside the high field region. Projected sensitivities reach down to ALP masses of 10−8, reaching axion-59

photon couplings just lower than 10−11. This novel approach capitalizes on the high-Q of superconducting60

RF cavities without putting them in a high-field region.61

The LSW technique can also be used to extend sensitivity of existing axions searches to lower mass62

ALPs. The emitter cavity will excite any ALP or HSP field with a rest mass lower than energy of the resonant63

frequency. This produces a finite probability of detecting an ALP or HSP with any mass below the resonant64

energy rather than the narrow slice produced by haloscopes, although to avoid kinematic suppression it65

may be necessary to adapt the detector. An example of a simple adaptation to enhance the off-resonance66

detection in the case of HSPs is to alter the relative orientation of the detector and emitter cavities to make67

more optimal use of the longitudinal polarisation mode. Strategies to increase the tunability of the detector68

further include the use of metamaterials as proposed for the development of plasma haloscopes13.69

4 Conclusion70

HSPs and ALPs remain viable dark matter candidates, and existing experiments possess the ability to search71

for them with small, minimal cost extensions. Initiatives should be taken to design and integrate LSW72

experiments in parallel with these haloscope searches to maximize the possibility of discovery.73

Additional Authors: G. Carosi(Lawrence Livermore National Laboratory), C. Boutan(Pacific Northwest74
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National Laboratory), I. Bailey(Lancaster University, UK), A. Gilfellon (STFC ASTeC, Daresbury Labora-75

tory, UK), B. Dobrich (CERN)76
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