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Abstract: “Dark photon” dark matter might produce a mechanical signal by accelerating atoms
in proportion to their baryon (B) or baryon minus lepton (B − L) number. We propose to search
for this signal using a high-Q mechanical resonator coupled to an optical cavity, harnessing tech-
niques that have enabled such “cavity optomechanical systems” to operate at the quantum limit in
recent years. Specifically, we envision an optomechanical accelerometer based on a silicon nitride
membrane fixed to a beryllium mirror, forming a Fabry-Pérot cavity. The use of different materials
gives access to forces proportional toB orB−L charge, while the cavity gives access to quantum-
limited displacement measurements. For a centimeter-scale membrane pre-cooled to 10 mK, we
find that sensitivity to dark photons can exceed that of torsion balance equivalence principle tests
in integration times of minutes, over a fractional bandwidth of∼ 0.1% near 10 kHz (corresponding
to a particle mass of 10−10 eV/c2). Our analysis can be translated to alternative systems such as
levitated particles, and suggests the possibility of a new generation of table-top experiments.
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Background: Mechanical dark matter (DM) detectors have seen a resurgence of interest for two
reasons. First, various models predict that DM produces a force on standard model (SM) particles,
for example, a strain due to coupling to fundamental constants3,8,20. Second, advances in the field
of cavity optomechanics—largely driven by gravitational wave (GW) astronomy—have seen the
birth of a new field of quantum optomechanics, in which high-Q mechanical resonators are probed
at the quantum limit using laser fields4. This has given access to exquisite force sensitivities over
a range of frequencies (1 kHz - 10 GHz) which is relatively unexplored, but well-motivated, in the
search for DM, corresponding to wave-like “ultralight” DM (ULDM).

Recently it has been proposed to search for ULDM with optomechanical accelerometers, a technol-
ogy being pursued in a diversity of platforms ranging from levitated microspheres to whispering
gallery mode resonators15,17,18,22. The concept of accelerometer-based ULDM detection is well-
established6,13,26, forming the basis for searches based on GW inteferometer14, atom interferome-
ter11, and precision torsion-balance experiments13. From a theoretical viewpoint, it is motivated by
the possibility that ULDM is composed of a massive vector field1,25—conceivable by various cos-
mological production mechanisms—which could couple to SM through channels such as baryon
(B) or baryon-minus-lepton (B − L) number. This coupling would manifest as an equivalence-
principle-violating13 (material-dependent) force on uniform bodies or a differential acceleration
on bodies separated by a distance comparable to the ULDM’s de Broglie wavelength.

Physical Goals: We wish to highlight in this LOI that compact (mm to cm-scale) optomechanical
accelerometers can be operated as resonant ULDM sensors, enabling high sensitivity at frequencies
where current broadband ULDM searches are limited (1 - 100 kHz, i.e. particle masses 10−11 −
10−9eV/c2), in a form-factor amenable to array-based detection6. As an illustration, we consider a
detector based on a Si3N4 membrane fixed to a Be mirror, forming a Fabry-Pérot cavity. Through
a combination of high mechanical Q, cryogenic pre-cooling, and quantum-limited displacement
readout, we find that this detector can probe vector B or B−L ULDM with sensitivity rivaling the
Eöt-Wash experiments31 in an integration time of minutes, over a fractional bandwidth of ∼ 0.1%.
Addressing challenges such as frequency tunability (to increase bandwidth) and scalability could
enable these and similar optomechanical detectors to occupy a niche in the search for DM.
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Figure 1: Concept for an optomechanical accelerom-
eter sensitive to vectorB orB−L ultralight dark mat-
ter. (a) Lumped mass model. (b) Membrane-mirror
example. Colors represent masses (materials) with
different B or B −L charge (charge density), qi (ρi).

Experimental technique: The basic con-
cept behind the detector is shown in Fig.
1a. Two mirrors made of different mate-
rial are connected by a massless spring. In
the presence of DM, each mirror experi-
ences a force proportional to itsB orB−L
charge q, and therefore an acceleration pro-
portional to its charge to mass ratio, which
is purely a material dependent. The result-
ing relative mirror acceleration gives rise
to a displacment between the mirrors, and
is enhanced when the acceleration is mod-
ulated at the natural frequency of the lumped mass system. The enhancement factor is the mechan-
ical quality factor, which can be large for a macroscopic solid state resonator. When combined
with cavity-enhanced displacement readout, this allows for sensitive acceleration measurements
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Figure 2: Centimeter-scale Si3N4 membranes as B − L dark photon detectors. Dashed gray and
solid blue curves are models for the acceleration sensitivity of different membrane sizes, expressed
as an apparent DM coupling strength gB−L

19, for a measurement time equal to the DM coherence
time and one year, respectively. Each model assumes a mechanical Q factor of 109, an operating
temperature of 10 mK, and a displacement sensitivity of 2 × 10−17 m/

√
Hz. A full multimode

spectrum for the 20 cm membrane is shown in green. Pink, red, and blue regions are bounds set by
the Eöt-Wash experiments, LIGO, and MICROSCOPE, respectively. At right, we zoom in on the
resonance of the 20 cm membrane and illustrate a day-long scan (gray region) made in intervals
τDM ≈ 1.5 min with a step size equal to the detection bandwidth ∆ωdet ≈ 2π × 0.2 Hz19.

near the mechanical resonance, typically limited by thermomechanical noise.

Building on this concept, we envision a detector based on a Si3N4 membrane fixed to a Be mirror,
forming a Fabry-Pérot cavity (Fig. 1b)19. The use of a Si3N4 membrane is motivated by a set of fea-
tures that represent the generic strengths of modern optomechanical devices. Among these are the
ability to achieve ultra-high quality factors, exceeding 1 billion, using phononic engineering12,30;
the ability to tune resonance frequencies using radiation pressure9, thermal27,28, and electrostatic
forces24; parts-per-million optical loss29; and the ability to operate as a high reflectivity mirror by
photonic crystal patterning7,23 (necessary to realize the cavity-enhanced detector design).

Sensitivity and Outlook: As detailed in [19] and in Figure 2, the sensitivity of the detector can
exceed that of torsional balance equivalence principle tests (the Eöt-Wash experiments) in an inte-
gration time of minutes, commensurate with the ULDM coherence time at Compton frequencies
of 1 - 10 kHz. The bandwidth of the detector is determined by the displacement sensitivity of the
cavity-based readout, which for Si3N4 membranes at 100 mK has been shown to be limited by
quantum-backaction noise16. A combination of multi-mode resonant readout, frequency scanning,
and array-based detection can yield an octave bandwidth with a relative small array of ∼ 10 detec-
tors, compatible with recent mechanical detector array proposals6. We anticipate a 5 year program
to prototype the detector and 10 year program to realize a broadband detector array.

Finally, while we have focused on vector ULDM, we note that similar optomechanical approaches
can be used to search for scalar ULDM2,10,20 and heavier DM candidates5,21, as discussed in other LOIs.
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