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Abstract: Since the last Snowmass process, the landscape of plausible and serious particle dark matter
models has expanded dramatically. Just as the models lead to predictions for observational signatures of
dark matter in the laboratory, so too may they lead to observable signatures in the cosmos. To date, the only
non-null measurements of dark matter and its particle properties come from detailed study of its distribution
in space and time. Powerful new telescope facilities are coming online within the next decade, which
can lead to ever-sharper measurements of dark matter properties – but only if paired with a well-matched
theoretical and simulation program. Here, we lay out the requirements for a simulation program to fully
realize the potential of this decade’s cosmic observatories.
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In the past three decades, cosmologists revealed that matter composed of Standard Model particles is
but lightly sprinkled across the universe, atop the structures shaped by the yet-unidentified dark energy and
dark matter. To date, all positive statements about the nature of either comes from the interpretation of data
from telescopes, despite a massive effort to detect dark matter in the laboratory. Because of cosmological
observations of the expansion of the universe and the clustering of matter in time, we know that dark matter
cannot carry (much) electromagnetic charge, must be non-relativistic at its time of decoupling in the early
universe, and must be stable on cosmic timescales. And still, there is so much more we want to know about
dark matter – its couplings to the Standard Model as well as to other particles in a possible hidden sector, its
particle properties, and the fundamental theory that describes it. This decade, in addition to the expanding
portfolio of laboratory experiments to probe a growing space of dark matter models, there will switch on
a number of powerful telescopes, like the Vera C. Rubin Observatory1, that can probe the clustering of
dark matter to high statistical significance across an unprecedented range of scales. Realistic and precise
simulations of the clustering of dark matter across cosmic time – including the physics of galaxies – are the
essential keys to translating these highly precise measurements of cosmic dark matter to constraints on dark
matter microphysical parameters. Here, we describe the requirements for a simulation program to reveal
dark matter physics with next-generation observational facilities.

Need #1: Collaboration between cosmological simulators and particle theorists. The space of possible
dark matter models is so vast that it is nearly impossible to directly simulate even a modest fraction of
the allowed parameter space. Collaboration between simulators and particle theorists is needed in order
to prioritize models and to develop classification schemes that divide dark matter models into broad classes
according to their structure formation properties, enabling a single simulation to represent models that might
have very different particle origins. This is powerful as it allows simulators to cover a broad range of dark
matter parameter space with a computationally realistic number of simulations. An example of such an
approach is the ETHOS effective theory, enabling a unified simulation approach to warm (WDM) and self-
interacting (SIDM) dark matter models2. It is of great interest to incorporate other dark matter models, such
as the class of fuzzy dark matter (FDM)3, with and without self-interactions4–6, in this framework.

Need #2: Algorithm development and code comparison tests. The community recognizes the need to
develop and validate algorithms for dark matter physics beyond the collisionless cold dark matter (CDM).
In the galaxy evolution community, the many codes with various implementations of the hydrodynamics
governing star formation are regularly tested against each other7. New algorithms for the gas physics and
for the analysis of simulation data are in continual development in order to solve specific problems identi-
fied in previous code comparison tests, and to incorporate more physics (e.g., gas cooling)8;9. We need a
similar approach for dark matter physics. First, we need to run performance and validation tests of existing
algorithms for, and code implementations of, WDM10;11 and SIDM12–15. Second, we need new algorithms
for FDM and QCD axions, especially to probe the existence and survivability of tiny microhaloes in these
models4;16–18. The latter has significant consequences for the detectability of QCD axions and axion-like
particles in terrestrial direct detection experiments. Again, close collaboration between simulators and parti-
cle theorists is necessary to ensure that the microphysical properties of dark matter are properly implemented
in the fundamentally macroscopic approach to solving the collisional Boltzmann equation in simulations,
and that the simulations target the most interesting parts of dark matter parameter space19;20.

Need #3: Simulations with full hydrodynamics for observational targets. The distribution of cosmic
dark matter is traced and shaped by galaxies. Thus, accurate predictions for the growth and properties of dark
matter halos depend on accurate modeling of galaxy physics. The properties of galaxies and halos depend
strongly on the adopted modeling for baryonic processes in simulations such as star formation and feedback.
However, different implementations of galaxy evolution physics can lead to different predictions for galaxies
even within the CDM framework21–24, and arguably none so far exactly match observed properties of galaxy
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populations (although the matching is rapidly improving)25. Thus a critical study of implementations of
feedback processes is required, and an emphasis on finding the most promising ways to disentangle possible
modifications to dark matter halos induced by the baryons versus effects driven by non-CDM models for
dark matter. Moreover, these studies should focus on the types of cosmic systems that are the most promising
targets for observations in the coming decade. In other words, we should go beyond the Milky Way (although
simulations of the Milky Way, including its stellar halo, are still essential) and simulate isolated dwarf
galaxies, strong lens systems, the first generation of stars and galaxies, and satellite systems of a variety of
different hosts, for example.

Need #4: Comparison of observations and simulations should be carried out in the space of observ-
ables. Simulation results have to be translated into image/spectral data to be directly compared with tele-
scope data. The interplay between simulations and observations has reached a high level of maturity due to
the increased resolution of simulations, and the wealth of observational data. Using simulations, we can, for
example, correlate the phase space distribution of stars with that of dark matter, and then use observations of
kinematics of stars (for example Gaia) to build a first map of the dark matter in the Milky Way26;27. This is
crucial in obtaining robust direct detection results. More broadly, translating simulation data into observable
space can lead to dramatic reassessments as to whether the data indicate problems with CDM or not, which
is particularly notable in the case of the rotation curves or velocity dispersion profiles of dwarf galaxies28;29.

Need #5: Fast realization of observed systems for dark matter parameter constraints. Quantifying
statistical observables (e.g., distributions of halos as a function of mass, density, and spatial location) within
different dark matter models requires large numbers of high-resolution simulations. To set parameter con-
straints on dark matter models from observed systems, comparisons with observations (e.g., strong gravita-
tional lenses) also often require ∼ 105 or more model realizations of a given system for each dark matter
model30. Such numbers are not achievable via direct simulation at the resolutions needed. Rapid compu-
tation of statistical observables that enable likelihood evaluations on the space of dark matter parameters
requires the development of fast semi-analytic and emulator approaches which can be applied across the
dark matter macro model parameter space. These tools must be calibrated with simulations. The chal-
lenge is to simulate enough systems, for enough dark matter models, that interpolation among simulations
is well-defined and accurate.

Need #6: Provide guidance to observers about promising new signatures of dark matter physics.
Simulations have long played a role in identifying new possible signatures of novel dark matter physics
in astronomical systems15;18;31–34, or in refining interesting features in standard direct and indirect particle
dark matter searches27;35. This is truly an area where cross-discipline collaboration plays an important
role in making progress. New ideas and methods from the collider community, thanks to the inflow of
particle physicists into astronomy, are being tested on simulations as well as in real astronomical data26;36.
Simulators are highlighting new areas of dark matter parameter space that can be tested observationally, and
observers give guidance as to what is possible to measure with telescopes. This cross-disciplinary work to
use simulations to find new probes of dark matter physics should be strengthened going forward.

The time is now. As laboratory experiments for an ever-wider set of dark matter candidates proliferate, and
as unprecedentedly powerful telescopes come online, we must have cosmological structure simulations, with
full galaxy-formation physics, to connect the two. Cosmological simulations, testing a wide variety of non-
CDM candidates, are essential to fully utilizing astronomical data to measure the microphysical properties of
dark matter, and connect them to searches in the lab. While the astronomical community has long supported
cosmological simulation work in the context of CDM, there is much work to be done to simulate non-CDM
models. The particle physics community can play an important role in supporting simulation work for non-
CDM candidates. Astronomical observations have a high discovery potential for the identity of dark matter
– but only if we understand what the data are telling us.
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