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Abstract: Nancy Grace Roman Space Telescope, formerly known as the Wide Field Infrared Survey Tele-
scope, is scheduled to launch in the mid-2020’s and will provide a multi-band, high-resolution view of the
cosmos. Equipped with a mirror the size of Hubble Space Telescope and a 0.3 deg2 infrared-sensitive cam-
era ∼ 100× larger than Hubble/Wide Field Camera 3, Roman will efficiently and sensitively map large areas
of the sky with ∼ 0.1′′ resolution. This resolution will enable the discovery of ∼ 1000 gravitationally-lensed
quasars, which in turn provide detailed constraints on the properties of dark matter substructures. We review
the promise of Roman for achieving dark matter constraints through strong lensing, both as stand-alone
lensing experiment and in collaboration with other facilities.
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Nancy Grace Roman Space Telescope (Roman) is a 2.4m space telescope scheduled to be launched in
the mid-2020’s by the United States National Aeronautics and Space Administration (NASA)1;2. Formerly
known as the Wide Field Infrared Survey Telescope, Roman will undertake an ambitious set of mission
surveys including a large area cosmology survey (∼ 2000 deg2) with multiband imaging (H ∼ 26.7AB flux
limit) and slitless grism spectroscopy (∼ 10−16 erg s−1 cm−2 line sensitivity at λ ∼ 1.5µm).

While the cosmology mission surveys are designed to constrain structure formation and the expansion
history through weak lensing and baryon acoustic oscillations, Roman can test our picture for small-scale
dark matter structure formation more directly through gravitational lensing. The cold dark matter plus
cosmological constant (ΛCDM) paradigm forms one of the pillars of our models for the origin and evolution
of cosmic structures. While remarkably successful at matching observations on large scales, there have been
persistent observational challenges to the cold, collisionless dark matter expectations on dwarf-galaxy scales.
These “small-scale controversies” may simply stem from a poor understanding of the baryonic processes
involved in galaxy formation, or indicate more complex dark sector physics3.

Detailed testing of the standard paradigm on small scales remains one of the most pressing issues in
cosmology. Numerical simulations in ΛCDM predict a rich spectrum of substructure in galaxy halos. Small
fluctuations in the galaxy-scale lensing potential caused by these substructures should result in measur-
able “flux anomalies” in the magnifications of quadruply-lensed quasar images4. While discrepancies be-
tween the observed flux ratios and those predicted by a smooth lens model may have been found in quasar
lenses5–7, the small size of current samples limits our understanding (∼ 56 quad lenses8, even fewer with
high-resolution imaging). According to predictions of the occurrence of multiply-imaged strong-lensed
quasars in wide-area surveys9, the Roman cosmology survey will revolutionize this field by increasing the
sample of quad lenses by more than 20× to ∼ 1000 objects.

The ability to use strong-lensed quasars as probes of the small-scale structure of dark matter halos can
be powerful for constraining the nature of dark matter itself. The quasar strong-lensing method is potentially
sensitive to the presence of any dark matter component that may suppress small-scale power. Subhalos in
the host galaxy lens and in structures along the line of sight10 affect the image positions and flux ratios.
By modeling how the mass function of subhalos, which is directly controlled by the small-scale power
spectrum, influences the lensing signal, the presence of a warm dark matter component can be constrained.
For instance, Gilman et al. 202011 used space-based imaging12 of only 8 multiply-lensed quasars to place
95% confidence limits of mDM > 5.2 keV assuming thermal relics. With increased samples of dozens of
quad-image strong lenses with high-resolution imaging, constraints can be achieved13 on sterile neutrino
dark matter models with masses mDM ∼ 7keV required to explain the 3.5keV line seen in XMM-Newton
and Chandra x-ray data14–16.

Over the last decade, methods have been developed to use extended lensed sources, in addition to the
point-like AGN, to identify substructures through distortions of lensed images. Extended sources are im-
aged into arcs and rings that probe a larger volume in the lens halo, increasing the number of subhalos
that can be sensed. They also can be drawn from larger populations of background sources, typical galax-
ies rather than bright AGN. Vegetti & Koopman (2009)17 described a method for identifying substructures
with high-resolution optical/IR imaging of extended galaxies, with Vegetti et al. (2012)18 reporting a de-
tection of a dark substructure in a gravitational lens at z = 0.9. In related work, Hezaveh et al. (2013,
2016a)19;20 described the use of (sub-)millimeter spectral lines from dusty lensed galaxies to search for
subhalos in the lenses. The wide survey area of the Roman cosmology survey, along with its combination
of multi-band imaging and spectroscopy, will provide many avenues for identifying large samples of lensed
galaxies for such substructure searches. By combining space-based and ground-based surveys21–23, Roman
can contribute by extending strong-lensing probes of dark matter to halo inner density profile slope mea-
surements24–26, group-to-cluster scale lenses27, and statistical measures of the matter power spectrum28.
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Figure 1: Effective area of Roman in its multiband photometric and grism spectroscopic bands as a function
of wavelength (updated from Akeson et al. 20192). Shown are the R062 (blue), Z087 (green), Y 106
(yellow), J129 (orange), H158 (red), F184 (crimson), and W146 (gray dot-dashed) photometric filters,
and the G150 and Prism spectroscopic filters (purple dashed). The high-resolution multiband imaging and
slitless spectroscopy will enable Roman to constrain substructure in individual lenses and thereby provide
information on the nature of dark matter.

While Roman covers smaller areas than either Euclid from space or Vera Rubin Observatory from the
ground, the potency of Roman to provide improved constraints on the small-scale matter power spectrum
through lensing is significantly enhanced by its high-resolution, ultradeep, space-based, multiband imaging
and grism spectroscopy. The Roman cosmology survey is expected to have Y , J , and H filter images, along
with additional coverage in the F184 filter that extends to λ ≈ 2µm. The high-resolution imagery will help
combat potential systematic issues with interpreting flux anomalies in the presence of baryonic structures
like disks29, and help resolve uncertainties about the potential impact of central baryonic components on the
survivability and presence of dark substructure25;30;31. This array of near-infrared filters will reduce the ef-
fect of dust attenuation from the lensing galaxies on the source images, improving the sensitivity to multiply
imaged lenses. With the high spatial resolution of the grism spectroscopy, Roman gains a complementary
probe using the flux ratio of strong quasar lines such as OIII to constrain substructure32;33.

Using Roman, astronomers will explore the substructure science achievable from the mission cosmology
surveys and various general observer and archival research programs. NASA has fully committed to open
science with Roman, with the mission data products released publicly without a proprietary period. Com-
munity science efforts, like the Space Warps-HSC effort at the Zooniverse project34, will be able to involve
the public in the discovery of multiply-lensed quasars in the Roman data. A host of machine-learning-based
methods for the discovery of strong-lensed systems have already been developed35–38, providing broad
opportunity for automated identification of quad-lens quasars and multiply-lensed galaxies in the Roman
surveys.
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