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Abstract: With this letter of interest (LoI), we propose a Snowmass white paper which reviews and ad-
dresses outstanding questions in ultralight bosonic dark matter, or ultralight axion (ULA), theory. We outline
next steps that will advance our theoretical understanding of ULAs outside of the regime of usual assump-
tions, which will pave the way for making sharper predictions for observational probes of realistic theories
with ULAs. For the purposes of this LoI, we define ULAs to have masses around ∼ 10−20 eV. We choose
this mass regime in particular because of novel astrophysical phenomena that could be a smoking gun sig-
nature for ULAs, including halo-scale solitons.
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Introduction:

Axion-like particles (ALPs)1–3, a generalized term that describe both the QCD axion and beyond-
Standard-Model particles with potentials similar to the QCD axion, may comprise a substantial fraction
of the dark matter (DM) and display exotic phenomenologies that are quite distinct from other particle DM
candidates like weakly interacting massive particles (WIMPs)4–6. ALPs as DM candidates are increasingly
compelling as targets of ongoing and planned experimental searches7–10. The classic QCD axion has been
the biggest focus of ALP-related research, whether in the context of laboratory searches or more indirect
astrophysical and cosmological approaches. More recently, ultralight ALPs (ULAs) with masses of or-
der ∼ 10−22 eV have emerged as a way of dovetailing challenges in small-scale structure formation with
string-inspired DM production mechanisms11,12.

In considering the behavior of ULA DM in the context of astrophysical and cosmological settings, it is
often assumed that ULAs interact primarily through gravity and that the ULA potentials can be neglected.
In these simplistic models, critical physics such as self-interactions is often ignored because of analytical
complexities associated with making them more realistic13. Moreover, much of the work on ULAs has
primarily focused on m ∼ 10−22 eV mass ULAs comprising all of the DM, with the effects on small-scale
structure in the nearby Universe in mind; however, several observational probes are converging to disfavor
m . few×10−21 eV14–23 if DM is entirely ULAs. In what follows, we outline some proposed topics
of interest for the white paper and give examples of key questions for each topic. Note that there may be
overlap between the topics and that the topics are meant to serve as broad categories.

Motivations:

We begin with the motivations for ULAs: what are the classes of theories which give rise to ULAs?
What is the status of the QCD axion as a dark matter candidate? Ultralight bosons, particularly ALPs, are
compelling DM candidates in the context of string theory, and their discovery could shed light on physics at
extremely high energies (see e.g.24). We aim to summarize the theoretical motivations for ULAs and place
them within the context of various UV theories.

Assumptions:

The theoretical work on ULAs often utilizes simplifying assumptions: what assumptions are made about
ULA models? What is the regime of validity of these assumptions? For example, one simplifying assump-
tion is to neglect the axion potential and to only consider the gravitational interactions of the axion with the
Standard Model and with itself (as well as the effects of “quantum pressure” which arise due to the macro-
scopic de Broglie wavelength and not because of additional forces). However, axion fields obey a shift
symmetry. Since shift-symmetric potentials generally have terms that are not quadratic in the axion field,
the axion energy density does not necessarily redshift entirely as DM. We aim to enumerate the assumptions
made in ULA theory and elaborate on the regime of validity of these assumptions and how they affect the
formation, evolution, and constraints on ULAs.

Formation:

Given the motivations and assumptions about ULAs, how do we create a self-consistent formation his-
tory for ULAs? What are the early universe dynamics of ULAs? What are the initial conditions? What is
considered the “natural” parameter space? For instance, ULAs with m ∼ 10−22 eV and decay constants
of order Planck scale could be made in a way that is similar to the traditional misalignment mechanism for
the QCD axion12, which is somewhat reminiscent of the “WIMP miracle.” Alternatively, a large misalign-
ment angle, coupled with attractive self-interactions, can significantly enhance structure formation on small
scales via a parametric resonance25. We aim to summarize these and other various production mechanisms
of ULAs.
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Cosmological Evolution:

Another key topic of interest is in the evolution of ULAs: what is the cosmological history of ULAs?
What is the theory behind structure formation with ULAs? How do self-interactions affect the cosmological
and astrophysical predictions of ULAs? The behavior of ULAs in the linear regime of clustering has been
well studied, see e.g.16. Recent work has attempted to improve our understanding of structure formation
with ULAs in the nonlinear regime with simulations and semi-analytic models26–29, primarily focusing on
the regime with m ∼ 10−22 eV ULAs comprising all DM and ignoring the axion potential.

We propose supporting an active research program with significant theoretical and numerical efforts
dedicated to exploring ULA structure formation with a less restrictive set of assumptions. An (incomplete)
list of such non-perturbative, nonlinear phenomena to be pursued that could reveal the underlying nature
of ULAs include: non-perturbative, scale-dependent growth of linear perturbations in axions in the early
(and late) universe30,31 (including for example the effects of non-quadratic terms in the axion potential32),
as well as the formation and dynamics of solitons (oscillons/oscillatons/axitons/axion-stars) and vortices in
the early and present-day universe14,33–36. There are also interesting avenues to explore in the linear regime,
where distinctions between fluid, field, Klein-Gordon/Schrödinger descriptions may have phenomenological
consequences31,37–40,40,41. Moving beyond the non-interacting/weakly interacting limit, such phenomena
should be investigated by including effects of strong self-interactions in axion-like fields25,31,35,42, as well as
potentially resonant interactions with other fields43 and with the inclusion of sufficient baryonic physics in
a realistic cosmological setting26,27. In some cases, these effects can enhance rather than suppress structure
beyond the ULA Jeans scale.

Detection and Constraints:

Finally, how do we detect ULAs? How do the assumptions which go into ULA models affect the va-
lidity of the various constraints? For example, the earliest black hole superradiance constraints assumed
negligible self-interactions24,44,45. More recent work has demonstrated that including self-interactions and
other non-linear effects can dramatically alter the dynamics of black hole superradiance44,46,47. In addition,
including the effects of dynamical friction in an ULA background may affect the predictions of ULA con-
straints12,48,49. Many structure formation constraints hinge on the ULA being a significant portion of the DM
and only consider gravitational interactions21,22,50; more recent work has shown that going beyond these as-
sumptions dramatically affect the phenomenology and constraints, for instance taking into account the axion
potential. Current bounds from the Cosmic Microwave Background set an approximate limit on the axion
decay constant, fa & 1013GeV(10−20 eV/ma)

32, independently of the axion production mechanism; even
more stringent bounds can be derived if one assumes production through misalignment51. Furthermore,
imprints on rotation curves in well-resolved, low surface-brightness disk galaxies mays be used to constrain
the ULA mass from below, as analytic arguments and simulations suggest that ULAs form soliton cores in
DM halos52–55.

Outlook:

ULAs have a rich phenomenology in the context of astrophysics and cosmology, which has yet to be fully
explored outside a regime of standard assumptions. These assumptions may not apply to well-motivated
classes of theories. We advocate for more support for theoretical work in this area, focusing both on the
extreme UV motivations and early Universe formation as well as the evolution and dynamics of ULAs at
later times in the history of the Universe. In light of new theoretical developments, existing constraints may
need reinterpretation or new observable predictions that may emerge; this program thus has the capability
to engage theorists and observers alike across a broad range of sub-disciplines in astrophysics, cosmology,
and particle physics.
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[17] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton and G. D. Becker, First constraints on fuzzy dark matter from
Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [1703.04683].
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