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The distribution of dark matter on extremely small physical scales, well below the threshold of galaxy
formation, is a largely unexplored frontier in observational cosmology. These physical scales are the most
sensitive to any non-gravitational interactions in the dark sector. In models of inflation, small-scale modes
were inside the horizon since the earliest times, and therefore bear signatures from early universe physics.
Measurements of the abundance, mass profiles, and clustering of extremely low-mass and baryon-free dark
matter structures (Mhalo � 107M�; k � 100hMpc−1) would provide unique, qualitatively new insights
on the physical mechanism of inflation and the fundamental nature of dark matter. Several observational
techniques based on gravitational lensing and stellar dynamics have been proposed that would exploit the
survey capabilities and enhanced precision of cosmology/astrophysics experiments planned for the next
decade (e.g., astrometric, photometric, and radial velocity surveys; gravitational wave interferometers and
pulsar timing arrays). Collectively, these experiments would probe extremely small dark matter structures
in Galactic and extragalactic environments, and are complementary in terms of sensitivity to varying dark
matter density profiles. Some near-future experimental configurations could have sensitivity even to typ-
ical dark matter halos predicted in collisionless cold dark matter models, and greater sensitivity to more
concentrated profiles (e.g., primordial black holes, ultra-compact minihalos, axion miniclusters). We ad-
vocate for increased theoretical and instrumentation efforts to develop these ambitious techniques, with a
vision towards a future experiment to explore dark matter microphysics and the source of primordial density
fluctuations through their signatures at extremely small scales.
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The standard cosmological paradigm with (1) nearly scale-invariant adiabatic primordial density fluc-
tuations and (2) collisionless cold dark matter (CDM) predicts that dark matter is clustered into halos with
a nearly scale-invariant mass spectrum extending from massive galaxy clusters (1015M�) down to planet-
scale masses. If the dark matter is composed of canonical weakly interacting massive particles (WIMPs)
with mass ∼ 100 GeV, the minimum halo mass set by the free-streaming length is ∼ 10−6M�

21. This
simple model has proved adequate to explain observations from large-scale structure, down to the least
luminous galaxies that reside in halos of ∼ 108M�

25,28,34,36. Over the next 5-10 years, observations of
ultra-faint galaxies, galaxy-galaxy strong lensing, stellar stream perturbations, and 21cm tomography will
all probe dark matter halos that are small enough (106 − 108M�) to contain few if any stars.

Robust identification of dark matter structures well below the threshold of galaxy formation is a qual-
itatively new observational frontier that is currently mostly unexplored. Measurements in this regime are
generically sensitive to a wide range of models that predict damped structure (e.g., warm dark matter ,
baryon/photon/neutrino scattering dark matter , decaying dark matter39,47, late-forming dark matter1, fuzzy
dark matter23,24, self-interacting dark matter , late kinetic decoupling of dark matter7,8, multi-field infla-
tion48) or enhanced structure (e.g., axion-like dark matter2,9,22,29,46, inflationary models that produce vector
bosons20, cosmologies with early dark matter domination4–6,17,18,35,49) relative to CDM. Below, we highlight
several proposed experimental approaches that could achieve sensitivity to stellar-and planet-mass-scale ex-
tended dark matter structures, by detecting their gravitational influence on a variety of observables.

Techniques to Probe Dark Matter and Early Universe Physics using Extremely Small Scales

• Cluster Caustics: Gravitational lensing by galaxy clusters produces caustics in which background objects
are magnified by orders of magnitude, and the properties of the images provide a sensitive probe of the mass
distribution in the lenses. Observations of background galaxies crossing through such caustics have already
been employed to constrain the fraction of DM in compact objects37, and similar techniques may be used
to probe DM substructure. In particular, if the mass distribution of the lens is smooth, images appear in
symmetric pairs across critical curves. Thus, asymmetries between these images probe inhomogeneities in
the lens, and with detailed modeling, such asymmetries can be related to the abundance of substructure.

Analysis of asymmetries in the caustic-crossing arc SGAS J122651.3+215220 suggests that they are
best accounted for by DM subhalos of mass 106–108M�

14. The same technique may be sensitive to lower
masses as well: abundant light substructures should often be found very close to the critical curve, where
they can produce a significant asymmetry in the images of sufficiently compact sources. The Vera C. Rubin
Observatory will detect many more such cluster caustic lens systems.

• Gravitational Microlensing: Gravitational lensing due to the transit of a compact dark matter object near
the line of sight to a source star may give rise to one or several lensed images with an enhanced total apparent
luminosity. By convention, a microlensing event is defined by a fractional magnification of µ = 1.34.
From the non-observation of microlensing events, constraints can be derived on compact dark structures, a
technique mostly studied for primordial black holes. Recently, such constraints have generalized to extended
dark matter structures, such as subhalos, boson stars, and axion miniclusters12,13,19. The sensitivity to
extended objects depends on their mass profile, with stronger constraints existing for more sharply peaked
profiles. Current constraints exist for substructures as large as 103R� or about 10 AU for subhalos of
10−2 − 101M�

13, and reach down to 10−11M� for smaller structures. CDM subhalos would have radii of
∼pc in this range and are thus currently unconstrained through this probe.

Importantly, the sensitivity of microlensing experiments depends strongly on total observation time and
cadence. Longer cadences provide greater sensitivity to more massive objects, and increased observation
time increases the overall sensitivity of the survey. Dedicated microlensing studies could also take specific
dark matter profiles into account, which typically lead to modified light curves in events.
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• Precision Astrometry: Galactic subhalos can induce detectable proper motions in luminous background
sources (e.g., stars and QSOs) due to gravitational lensing31,32,45. Several methods have been identified to
extract this signal with the ultimate goal of characterizing the lensing subhalo population, e.g., identification
of proper motion outliers due to lensing by compact objects, the use of matched filters to identify extended
subhalos from locally correlated proper motions32,45, and the spectral decomposition of the astrometric
velocity and acceleration fields over large regions of the sky31. A proof-of-principle analysis using the
matched filter approach and data from Gaia DR2 was recently presented32, demonstrating sensitivity to
∼ 108M� subhalos extended at the ∼ pc level—much less dense than what established methods relying on
photometric microlensing are typically sensitive to. The different proposed methods are complementary and,
taken together, will be able to probe a wide variety of scenarios—from NFW subhalos down to ∼ 106M�
to populations of compact objects—when applied to future astrometric datasets such as those from the
proposed space-based ESA Theia mission44, the upcoming NASA Nancy Grace Roman Space telescope ,
and radio observations from Square Kilometer Array (SKA) .

• Pulsar Timing: Long-term measurements of the time-of-arrivals of light pulses from arrays of pulsars can
be used to provide some of the most sensitive probes of substructure at small scales. Dark matter clumps
moving around the Earth-pulsar system imprint characteristic shapes in the timing residuals measured by
pulsar timing arrays and can be used to search for small scale structure in the galaxy by their gravitational
influence alone3,11,16,26,40–43. Clumps passing close by to the Earth or pulsar accelerate the astrophysical
body, resulting in a Doppler shift in the pulsar frequency. Additionally, if the clump passes through the line
of sight it will cause a Shapiro time delay in the signal. This technique is sensitive not only to very compact
objects such as black holes, but also to more diffuse objects such as DM minihalos3,11,16,40.

Pulsar timing observatories such as the Square Kilometer Array have been shown to be sensitive to
DM substructure across a wide range of masses above ∼ 10−11M�

16,40. In addition to single transits,
pulsar timing data can be searched for a stochastic background from distributions of DM substructure at low
masses, extending the sensitivity of these probes to& 10−13M� and to halo densities as low as predicted by
cold dark matter40. In addition to pulsar timing, upcoming stellar radial velocity surveys with measurement
precision of ∼ 10 cm/ s should also have sensitivity to accelerations induced by planet-mass-scale halos10.

• Lensing of Gravitational Waves: Observations of gravitationally lensed distant quasars and galaxies have
a long history of probing the invisible dark matter mass throughout the Universe, with high-resolution imag-
ing of galaxy-scale lenses closing in on the 106 − 107M� scale. The recent advent of gravitational wave
astronomy has the potential to push down the sensitivity to small dark matter halos by several orders of mag-
nitude15,38. Indeed, strongly lensed binary black hole (BBH) merger events detectable in the current LIGO
band have periods similar to the Schwarzschild timescale of ∼ 102 − 103M� compact dark matter clumps.
This coincidence of scales leads to a distinctive gravitational wave diffraction pattern that is imprinted on
the waveform of the gravitational wave signal. Since the lensing cross section increases significantly with
larger source redshift, third generation gravitational wave detectors capable of detecting BBH mergers out
to zs ∼ 2−4 offer the most promising path forward for this technique. Lensed fast radio bursts are expected
to be sensitive to low-mass structures via similar diffractive effects27,30,33.

The Path Forward

We advocate for enhanced theoretical, instrumentation, and data analysis efforts to develop experimental
techniques to access stellar- and planet-mass-scale extended dark matter structures. To enable the success
of these experiments, it is essential for the community to support dedicated theory and simulation efforts,
both (1) to model the matter distribution and observables at extremely small scales, and (2) to differentiate
between various dark matter and early universe physics models using detailed and diverse sets of observa-
tions. At this stage, we recommend that multiple experimental approaches be explored in parallel to better
quantify their sensitivity, robustness, and long-term potential, and to check for consistency between signals.
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Nadler (Stanford University), Annika Peter (Ohio State University), Harikrishnan Ramani (Stanford Uni-
versity), Josh Simon (Carnegie Observations), Jessie Shelton (University of Illinois at Urbana-Champaign),
Yu-Dai Tsai (Fermilab / FNAL), Zihui Wang (New York University)

References

[1] Shankar Agarwal, Pier Stefano Corasaniti, Subinoy Das, and Yann Rasera. Small scale clustering of
late forming dark matter. Phys. Rev. D, 92(6):063502, 2015.

[2] Mustafa A. Amin and Philip Mocz. Formation, gravitational clustering, and interactions of nonrela-
tivistic solitons in an expanding universe. Phys. Rev. D, 100(6):063507, 2019.

[3] Shant Baghram, Niayesh Afshordi, and Kathryn M. Zurek. Prospects for Detecting Dark Matter Halo
Substructure with Pulsar Timing. Phys. Rev. D, 84:043511, 2011.

[4] Gabriela Barenboim and Javier Rasero. Structure Formation during an early period of matter domina-
tion. JHEP, 04:138, 2014.

[5] Carlos Blanco, M. Sten Delos, Adrienne L. Erickcek, and Dan Hooper. Annihilation Signatures of
Hidden Sector Dark Matter Within Early-Forming Microhalos. Phys. Rev. D, 100(10):103010, 2019.

[6] Nikita Blinov, Matthew J Dolan, and Patrick Draper. Imprints of the Early Universe on Axion Dark
Matter Substructure. Phys. Rev. D, 101(3):035002, 2020.

[7] Torsten Bringmann. Particle Models and the Small-Scale Structure of Dark Matter. New J. Phys.,
11:105027, 2009.

[8] Torsten Bringmann, Haavard Tveit Ihle, Joern Kersten, and Parampreet Walia. Suppressing structure
formation at dwarf galaxy scales and below: late kinetic decoupling as a compelling alternative to
warm dark matter. Phys. Rev. D, 94(10):103529, 2016.

[9] Malte Buschmann, Joshua W. Foster, and Benjamin R. Safdi. Early-Universe Simulations of the Cos-
mological Axion. Phys. Rev. Lett., 124(16):161103, 2020.

[10] Sukanya Chakrabarti, Jason Wright, Philip Chang, Alice Quillen, Peter Craig, Joey Territo, Elena
D’Onghia, Kathryn Johnston, Robert J. De Rosa, Daniel Huber, Katherine L. Rhode, and Eric Nielsen.
Towards a direct measure of the Galactic acceleration. arXiv e-prints, page arXiv:2007.15097, July
2020.

[11] Hamish A. Clark, Geraint F. Lewis, and Pat Scott. Investigating dark matter substructure with pulsar
timing – I. Constraints on ultracompact minihaloes. Mon. Not. Roy. Astron. Soc., 456(2):1394–1401,
2016. [Erratum: Mon.Not.Roy.Astron.Soc. 464, 2468 (2017)].

4



[12] Djuna Croon, David McKeen, and Nirmal Raj. Gravitational microlensing by dark matter in extended
structures. Phys. Rev. D, 101(8):083013, 2020.

[13] Djuna Croon, David McKeen, Nirmal Raj, and Zihui Wang. Subaru through a different lens: mi-
crolensing by extended dark matter structures. 7 2020.

[14] Liang Dai, Alexander A. Kaurov, Keren Sharon, Michael K. Florian, Jordi Miralda-Escudé, Tejaswi
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