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Abstract: Resolved stellar population studies can provide some of the deepest probes of the structures of
the stellar halos of galaxies, from the streams of disrupted satellite galaxies to the faint end of the dwarf
satellite luminosity function. These structures are sensitive to the nature of dark matter and the evolution of
the galaxies that form within its halos. The Nancy Grace Roman Space Telescope (Roman) will have spatial
resolution of the Hubble Space Telescope, but cover over 100 times more area and have higher sensitivity
in the near infrared. These characteristics will make Roman capable of producing the largest sample of
deep, wide-area maps of the stellar halos of nearby galaxies ever observed, including color and brightness
information of the individual stars in those halo structures. Herein we discuss prospects for applying such
observations to the study of the nature of dark matter, including potential constraints on competing dark
matter models.
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Nancy Grace Roman Space Telescope (Roman) is a 2.4m space telescope scheduled to be launched in the
mid-2020’s by the United States National Aeronautics and Space Administration (NASA)1;2. The current
baseline mission plan calls for 25% of the observing time to be allocated to the international astronomy
community through a general observer (GO) program. A portion of this time will very likely be dedicated
to multiband imaging of nearby galaxies and their surrounding halos with 0.1” spatial resolution, allowing
for the detection and characterization of individual stars out to distances exceeding 10 Mpc.

Roman’s wide FoV, sensitivity, and excellent star-galaxy separation can revolutionize the study of galac-
tic halos as mapped by individual stars. For the volume (R.10 Mpc) within which it can resolve stellar
populations, Roman will be able to map the stellar halos for hundreds of galaxies, improving current sample
sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached
only in the Local Group.

In addition to the global properties of stellar halos (mass, shape, etc.), Roman can measure the frequency,
surface brightnesses, physical scales, and morphologies of the debris that remains after a lifetime of galaxy
accretion and disruption. The physical debris looks dramatically different if the accreted material came from
satellites biased towards being accreted early/late, on orbits of low/high eccentricity and from satellites of
high or low luminosity (Figure 1). The observed properties of the substructure can be associated with funda-
mental physical quantities: the frequency of tidal debris reflects the recent accretion rate; the physical scales
and surface brightnesses reflect the mass and luminosity functions of infalling objects; and the morphology
reflects the orbits. Thus, the substructure in the halo offers a direct constraint on the history and nature of
baryonic and dark matter assembly3.

In addition to accretion histories, tidal debris probes the dark matter distribution around galaxies. Com-
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Figure 1: Left Panels: Examples of how halo morphology reflects the history of accretion, for old vs. young
accretion events, for high- vs. low-luminosity accreted satellites, and for accretion along radial vs. circular
orbits3. Right Column: Simulated optimal ground-based map (1 hour with Subaru in 0.7′′ seeing) of a model
halo is shown above a simulated deep, wide-field space-based map, possible with Roman, in the 2020s of
the same model, which allows exquisite star-galaxy separation to faint magnitudes in low stellar density
regions. Even higher resolution will be necessary to probe the more crowded inner and star-forming regions
of galaxies. Degree-sized coverage is required to map these areas.
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plexity arises beyond the conceptual interpretation described above because: (i) the morphology and fre-
quency of debris structures can be affected by the triaxiality of dark matter halos (chaotic orbits can cause
“fanning” of thin tidal streams4); and (ii) the continuity of streams can be interrupted by interactions with
dark matter subhalos. However, these “complications” leave observable signatures that are potentially sepa-
rable from the mass accretion history alone — and hence offer the additional possibilities of measuring the
triaxiality distribution of dark matter halos as well as detecting substructure within them. Initial tests of the
ability of Roman to detect such detailed structures suggest that we will both be able to find such structures5;6

and use them to constrain the existence of low mass dark matter halos7

Furthermore, the high-resolution, wide-field imaging will provide the most complete catalogs of dwarf
satellite galaxies yet achieved. The detailed number statistics on these small, faint galaxies provide a strong
lever arm for testing dark matter models. The ΛCDM model predicts the numbers and masses of sub-halos
surrounding higher mass galaxies (Figure 2). These halos should be observable in the form of lower mass
satellites around larger galaxies. However, statistical tests of galaxy formation in a ΛCDM context face
extensive challenges8 9. For example, studies of the most luminous MW dwarfs indicate that their central
density profiles are flatter and their mean densities are substantially lower than those of simulated subhalos
of the same mass (the ‘core/cusp’ and ‘too big to fail’ problems10;11).

Driven by these discrepancies observed in the Local Group, significant progress has been made towards
reconciling theory and observation. Improved simulations with baryonic and dark matter physics show that
some putative dwarf galaxies may never form stars and stay ‘dark’12–17. New searches for dwarf galaxies
in nearby groups have resulted in many new dwarf satellite candidates to the Milky Way (MW; e.g., DES
Collaboration 2015) and several nearby large galaxies (e.g., M8118;19; M9420; M10121–23; NGC 548524;
Centaurus25–27; Leo I28; NGC 278429; NGC 317530). Many more such satellite candidates, as well as
isolated ultra faint dwarf galaxies (probing low density environments), will be discovered by LSST and
Roman. Confirmation, distances, and physical characterization of these ultra-faint galaxy candidates are
difficult with current capabilities31–34. However, such targets will be characterized by future observatories
(e.g., James Webb Space Telescope and 30-m facilities), and their statistics will be fundamental to galaxy
formation models.

Figure 2: Left: Predicted number of satellite galaxies as a function of stellar mass based on simulations for
four different central galaxy masses. These mass functions will vary for different dark matter and galaxy
formation models. Roman could potentially measure these mass functions for hundreds of galaxies. Middle
and Right: State-of-the-art dark matter simulations of a massive and low-mass galaxy, showing the large
number of subhalos predicted down to small mass scales, even at low masses.
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[13] Macciò, A. V. et al. Luminosity function and radial distribution of Milky Way satellites in a ΛCDM
Universe. MNRAS 402, 1995–2008, DOI: 10.1111/j.1365-2966.2009.16031.x (2010). 0903.4681.

[14] Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. MNRAS
421, 3464–3471, DOI: 10.1111/j.1365-2966.2012.20571.x (2012). 1106.0499.
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