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Abstract:
In this research program, we aim to detect low-mass dark matter substructures in the Milky Way solely
through their gravitational lensing signatures on luminous background sources. We have developed several
analysis techniques and protocols that can tease out these lensing-induced angular deflections, which im-
print correlated distortions on the motions of background stars, quasars, and galaxies. Ongoing astrometric
surveys such as Gaia will probe large parts of viable parameter space where structure formation is enhanced
at small scales. Upcoming and proposed surveys such as the Nancy Grace Roman Space Telescope, Square
Kilometer Array, and Theia will greatly extend the discovery reach, and may be sufficiently sensitive to
detect dark subhalos, entirely devoid of stars. Such a discovery would have far-reaching implications for
early structure formation, astroparticle physics, and (in)direct detection of dark matter.
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Background: The precise nature of the constituents of the dark matter (DM) and their microphysical prop-
erties is not known. While a wealth of information has been collected about its macroscopic properties and
behavior, detection of smaller DM structures is increasingly challenging due to their lower light-to-mass
ratios; DM halos with masses below . 108M� do not harbor conditions for star formation and are thus
effectively dark1–3. Methods reliant on the minimal coupling to gravity include fluctuations in extragalactic
strong gravitational lenses4–24, wakes in the MW stellar halo25;26, diffraction of gravitational waves27, pho-
tometric irregularities of micro-caustic light curves28, and perturbations of cold stellar streams29–35 (with
tentative detections36;37). These techniques show promise but are indirect and/or applicable to extragalactic
structures only. Direct searches for MW substructure have so far been confined to transients in photometric
lensing38–43 and pulsar timing44–50, which would produce detectable signals for ultracompact objects such
as black holes but not for more extended structures such as halos that collapse after matter-radiation equality.

Inferring Galactic Substructure with Astrometry: Astrometry—the precise measurement of the positions
and motions of celestial objects—is currently in a golden age, with high quality astrometric datasets avail-
able via the Gaia satellite. Gravitational lensing of luminous sources by foreground Galactic DM subhalos
would induce angular deflections in the apparent positions of the background sources. Ref.51 suggested
detecting this lensing effect in the time-domain, i.e., looking for the apparent motion—angular velocity and
acceleration—of celestial objects. Several categories of observables were presented with the goal of charac-
terizing the properties of DM subhalos within the Milky Way halo—halometry—through astrometric effects
measurable by upcoming surveys. Two subsets of these observables were investigated more thoroughly and
validated on Gaia astrometric data in Refs.52;53, both described in more detail below. With this Letter, we
express our intent to pursue this program of qualitatively new searches for Galactic DM substructure using
time-domain astrometric weak gravitational lensing.

A discovery of dark low-mass substructures with the techniques presented, possible with future astro-
metric surveys, would be a watershed event. Because of the absence of baryonic feedback, their abundance,
mass function, and density profiles would provide a transparent window on the primordial fluctuation spec-
trum and the DM transfer function on comoving scales below ∼ 0.1Mpc. It would probe the spectrum of
adiabatic perturbations produced from the inflationary stage after the one measured in the CMB54;55 and
the Ly-α forest56, and of small-scale isocurvature fluctuations produced from e.g. a late phase transition in
the DM sector57;58. This would rule out or provide evidence for small-scale structure suppression—an un-
avoidable prediction of, among others, light fermion (“warm”)59–61 and ultralight scalar (“fuzzy”)62–64 DM
models. Enhanced-density subhalos can result from dissipation and self-interactions in the DM sector65–67,
or early-time structure growth in axion DM models with large misalignment68. A localized detection and
characterization of a dark subhalo would also be a supreme target for indirect detection signatures from DM
annihilation or decay, due to a (likely) small baryonic background69.

Local Astrometric Searches: The lensing correction assumes a characteristic spatial pattern that can be
searched for in large astrometric catalogs of luminous sources. The first method, originally introduced in
Ref.51, proposes the detection of the local lensing pattern through a matched-filter velocity template. The
aim is to detect individual lenses by computing the degree of overlap between the velocity field of back-
ground sources and the one induced by a tentative lens candidate, marginalizing over possible lens and
background characteristics. Ref.52 presented a simulation-based data analysis pipeline to search for the
lensing signal, which includes appropriate sample selection, background subtraction, handling of systemat-
ics, and evaluation of the test statistic. Applying the analysis to stars in the Magellanic Clouds (MCs) from
Gaia DR2, an upper bound on the population of Galactic subhalos was obtained, with the best sensitivity
corresponding to lens masses of∼ 108M� and sizes. 1 pc. While these results currently only constrain an
O(1) fraction of the DM abundance in compact halos, the sensitivity reach is expected to improve rapidly
over time, and with the use of data from upcoming surveys.
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Figure 1: Sensitivity projections for subhalos as a function of NFW (Navarro-Frenk-White) core mass Ms and scale radius
rs. The blue solid (dashed) curves corresponds to the template velocity search Tµ, assuming a proper motion error of σµ,eff =
200(1) µas y−1, number of stars N0 = 107(108), and angular area ∆Ω = 0.01(4π), representative of Gaia observations toward
the MCs (SKA radio astrometry of quasars). The green solid (dashed) curves show the global Cµ velocity correlation sensitivity
for σµ,eff = 10(1) µas y−1, N0 = 106(108), and ∆Ω = 4π, representative of near-future (far-future) astrometric observations
of quasars in the radio and visible bands. The red solid (dashed) curve depicts the sensitivity for global acceleration correlations
Cα, assuming an angular acceleration precision of σα,eff = 10(0.1) µas y−2, N0 = 109(1010), and ∆Ω = 0.2 for Gaia (Theia)
observations of Galactic disk stars. The “standard” NFW subhalo expectation is shown in solid gray ref. 78 for subhalo distance
{240, 10, 5} kpc from the Galactic Center (closer ones being denser), as well estimates for nonstandard collapse redshifts zcoll

(dotted gray).

Global Astrometric Searches: Complementary to local searches for individual dark subhalos, astrometric
observations can also be used to search for the global effects of a Galactic substructure population. Methods
based on looking at correlations of the substructure-induced proper motion fields, first presented in Ref.51,
were extended and recast in the ubiquitous language of angular power spectra in Ref.53. The power spectrum
approach can be used to effectively tease out the astrometric lensing effects of a substructure population
using data collected over large regions of the sky. By leveraging the aggregate population signal, these
methods can be preferentially sensitive to more extended subhalos than those probed by local approaches. A
power spectrum decomposition of the celestial proper motion field also provides a number of cross checks—
based on the unique spectral properties of a lensing signal—that can be used to distinguish a signal sourced
by a subhalo population from that arising due to unmodeled backgrounds. A proof-of-principle application
was demonstrated in Ref.53 by performing a vector power spectrum decomposition of the Gaia DR2 quasar
proper motion field, with significant gains expected from future surveys and datasets.

Sensitivity Projections and Future Astrometric Surveys: With limited integration time tint, currently
at 22 months for Gaia DR2, astrometric constraints are statistics-limited now and for the foreseeable fu-
ture. This dataset still contains partial instrumental calibration errors, inadequate background estimation,
underestimates of centroid location uncertainties, and mislabeling of the sources’ properties, among other
uncertainties70;71. The improvement of such issues in view of the fivefold increase of Gaia’s operational
time span warrants that the proper motion (proper motion acceleration) error will scale with time at least as
fast as t−3/2

int (t−5/2
int ), boosting the sensitivity of the analyses developed and delivering parametric leaps in

reach in the near future. The dashed lines in Fig. 1 show the end-of-mission sensitivity of Gaia to NFW sub-
halos72 (solid lines) through the use of correlation (C) and template (T ) observables of the proper motion (µ)
and proper motion acceleration (α). Beyond Gaia, upcoming and proposed missions with astrometric capa-
bilities such as Theia73, Nancy Grace Roman Space Telescope74, and Square Kilometer Array (SKA)75–77

will greatly expand the discovery reach by opening up the sub-µas astrometry frontier. Figure 1 also displays
the corresponding projected sensitivities of SKA and Theia (dashed lines) to NFW subhalos.
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