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Abstract: Dark matter (DM) is omnipresent in the universe, from sub-Galactic scales to galaxy clusters.
Despite its abundance, the nature of DM remains mysterious, as it has evaded all nongravitational direct and
indirect probes thus far. Primordial black holes (PBHs), formed out of regular-matter overdensities in the
early universe, provide an attractive alternative to new-physics models of DM. If these PBHs are ultralight
(with massesMPBH . 1018 g), their gravitational effects are indistinguishable from those of regular particle
DM. However, due to their black-hole nature, ultralight PBHs Hawking evaporate over time, emitting high-
energy particles that can be directly detected. Here we outline what next-generation MeV telescopes ought
to do to better detect ultralight PBHs.
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Background

Despite the precision to which we know the abundance of the cosmic DM, its nature remains one of
the most puzzling questions in physics. One of the oldest and well-motivated candidate of DM is primor-
dial black hole (PBH). PBHs could form in the very early Universe due to the gravitational collapse from
Standard Model (SM) plasma, and are a possible solution to the DM puzzle that does not invoke any new
particles1–7. The fraction fPBH of DM in the form of PBHs is constrained to be below unity for PBH
masses MPBH & 1023 g (≈ 5× 10−11 M�) via various observations, such as gravitational lensing8–18, stel-
lar dynamics19–25, dwarf galaxy heating26, gravitational waves27–36, and the cosmic microwave background
(CMB)37–40. The situation is different for lower-mass PBHs, as their classical gravitational signatures are
not strong enough to cause a measurable effect in existing data. Low-mass PBH being captured by or to de-
stroy white dwarfs41 and neutron stars42 can lead to rich astrophysical signatures43–45. Potential constraints
set by these BHs are sensitive to the assumptions of the properties of each astrophysical systems, which
have large observational uncertainties46–50. Ultralight PBHs can also lead to interesting multi-messenger
astrophysical signatures with their effects on compact-object mergers51;52.

Search for PBHs using gamma-ray telescopes

Non-spinning black holes (BHs), with mass MBH, evaporate over time, emitting particles roughly as a
blackbody with temperature53–58 TBH = 1

8πGMBH
. For reference, MBH = 1017 g corresponds to a non-

spinning BH temperature TBH ≈ 0.1 MeV, and thus the Hawking emission from these BHs will predomi-
nantly consist of neutrinos and photons. This shows that sub-MeV range probes hold great promise to find
PBHs as DM. For spinning PBHs (e.g.59) the emission spectrum can change60.

A promising avenue to search for ultralight PBHs (MPBH . 1018 g) consists of searching for their
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Figure 1: Left: Different constraints on the fraction fPBH of DM that is composed of PBHs. The limit from
detection of positrons with Voyager 1 is shown in red61 (propagation model B without background), from the
CMB in purple62 (varying all parameters), from extra-Galactic gamma-ray emission in green63 (assuming
no AGN background), and from the flux of the 511 keV line in the MW in blue64. The strongest constraint,
in black, uses the Galactic gamma-ray flux measured by INTEGRAL, from Laha et al. (2020)65. There are
currently no robust constraints to the right of the plot until MPBH = 1023 g13;18;60;66;67. Right: Galactic
gamma-ray flux in the 0.2 − 0.6 MeV energy band, from Laha et al. (2020)65. The black crosses show the
INTEGRAL measurements as a function of Galactic longitude latitude b (integrated over |l| < 23.1 deg.)68.
The red circles show the predicted emission from Hawking-evaporating PBHs with MPBH = 1.5× 1017 g,
if these PBHs make up the entirety of the MW DM.
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Standard Model radiation as they Hawking evaporate54–56;69;70. This radiation would appear as electron-
positron pairs60;61;64;71–75, extra-Galactic gamma rays63;76;77, and affect the CMB62;78–80. These studies
have ruled out PBHs as the entirety of the DM for MPBH . 1017 g. More recently, the strongest bound on
the PBH mass has been raised to MPBH ≥ 1.2 × 1017 g at 95% C.L., by using INTEGRAL MeV data65.
The current constraints on ultralight PBH DM is shown in the left panel of Fig. 1. This constraint can be
potentially be improved significantly by the next generation of gamma-ray telescopes. In the absence of a
viable technique to detect keV-scale neutrinos, photons offer the only probe of detecting & 1017 g PBHs via
Hawking radiation.

We show the flux from PBH DM with MPBH = 1.5 × 1017 g in the 0.2 − 0.6 MeV band—where it
peaks—in the right panel of Fig. 1. The Galactic emission from astrophysical backgrounds, as measured by
INTEGRAL, is more concentrated towards the Galactic Center, as opposed to that from PBHs (or generic
decaying DM), so a broad angular coverage will help us constrain decaying DM better.

Challenges and Opportunities

Heavier PBHs have lower temperatures as well as lower number densities. Therefore, the peak-energy
flux of the emission from PBHs depends strongly on their mass, roughly as 1/M3

PBH. This severely hampers
searches of PBHs heavier than MPBH ∼ 1017 g. Recent work has cast doubt on PBH constraints due to
femtolensing66, and capture onto stars67. Thus, there is a large gap between the constraint from Laha et al.
(2020)65 and the next one: MPBH > 1023 g, from Subaru microlensing data13;18, where PBHs are currently
allowed to make up all the DM.

Future gamma-ray observatories, such as AMEGO, will dramatically improve our understanding of the
Galaxy in the energy range [200 keV – 10 GeV] 81. AMEGO will be a wide field-of-view instrument which
will have a higher energy and spatial resolution compared to earlier instruments in this energy regime. A
search of PBHs using the diffuse Galactic and extra-galactic gamma-ray flux will benefit from the larger
exposure which will be provided by AMEGO. The expected sensitivity of AMEGO will be approximately
20 times better than COMPTEL. Due to this improved sensitivity, AMEGO is expected to detect a number of
new point sources which can lower the contribution of the undetected point sources to the Galactic and extra-
Galactic gamma-ray background. The improved angular and energy resolution in AMEGO can also advance
our understanding of the astrophysical background. This will lead to better search strategies, and therefore
a detection or limits, on ultralight PBHs. Including observations of other multi-wavelength instruments, it
is expected that we will better understand the contribution of cosmic-rays to the gamma-ray measurements.
Since the AMEGO energy range covers the π0 bump, it will be useful to disentangle this contribution to
the astrophysical backgrounds 82. A better understanding of the Galactic diffuse background in the energy
range ∼200 keV to 500 keV holds great potential to probe PBHs with mass & 1017 g.

In addition to measuring the continuum gamma-ray component, AMEGO can also provide a sharper
measurement of the 511 keV line in the Galactic center. If AMEGO is able to pin-point the sources respon-
sible for the Galactic Center 511 keV line, then this will further constrain the viability of PBHs supplying the
required number of positrons. A more precise measurement will help us go deeper into the fPBH parameter
space.

All of the above considerations make next-generation MeV telescopes, such as AMEGO, the best probes
to search for ultralight PBHs as DM, and close the window that is current allowed for masses 1017− 1023 g.
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[76] Alexandre Arbey, Jérémy Auffinger, and Joseph Silk. Constraining primordial black hole masses with
the isotropic gamma ray background. Phys. Rev., D101(2):023010, 2020.

[77] Bernard Carr, Kazunori Kohri, Yuuiti Sendouda, and Jun’ichi Yokoyama. Constraints on Primordial
Black Holes. 2020.
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