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Abstract: Primordial Black Holes may have been created by density fluctuations or phase transitions in
the early Universe and could be as massive as >109 solar masses or as small as the Planck mass. It has
been postulated that a black hole has a temperature inversely-proportional to its mass and will thermally
emit all species of fundamental particles via Hawking Radiation. Primordial Black Holes in some mass
ranges may be candidates for a non-negligible fraction of WIMP dark matter. A next-generation survey
instrument such as the Southern Wide-field Gamma-ray Observatory (SWGO) would be ideal for searching
for the evaporation signatures of Primordial Black Holes. While the mass expected to be evaporating today,
producing short bursts lasting a few seconds of high-energy gamma radiation in the GeV–TeV energy range
is not a WIMP dark-matter candidate, confirmed detection of a PBH burst of any initial mass would lend
significant strength to the theory of PBHs as WIMP dark matter, as well as provide valuable insights into
many areas of physics.

∗This Letter contains excerpts and material from White Papers submitted for the Astro2020 Decadal Survey 1;2

1



Primordial black holes (PBHs) are theoretical black holes which may have been formed in the early
stages of the Universe3. Their mass spectrum depends on the formation mechanism and spans a large mass
range. Black holes with low-enough mass are expected to evaporate completely through the radiation of
particles and energy at the Hawking temperature4. The lifetime of a PBH is

τ ≈ 4.55× 10−28(MBH/1g)
3 s . (1)

That is, a PBH with an initial mass of ∼ 5 × 1014 g that was formed in the first moments of the Universe
would have an evaporation time of roughly the current age of the Universe5, and thus might be detectable
from Earth today. In the latest stage of evaporation, the PBH emits particles and radiation at increasingly
higher energies which may be detectable by atmospheric or water Cherenkov detectors6. While PBHs with
mass ∼ 5 × 1014 g are expected to be evaporating today, producing short bursts lasting a few seconds of
high-energy gamma radiation in the GeV–TeV energy range, they are not a WIMP dark-matter candidates7.
However, confirmed detection of a PBH burst of any initial mass would lend significant strength to the
theory of PBHs as WIMP dark matter by proving their existence, as well as allowing the determination
of their relic density and rate-density of evaporation, and providing valuable insights into many areas of
physics, including fundamental processes in the very early Universe and particle physics at energies higher
than currently achievable by terrestrial accelerators8.

Gamma-ray observatories can therefore search for PBHs by looking for bursts of high-energy gamma
rays created by the last seconds of PBH evaporation. Upper limits on the local density of such evaporating
PBHs have been reported by the High-Altitude Water Cherenkov (HAWC) Observatory9. These analyses—
and related ones by atmospheric Cherenkov observatories—search for spatially-localized and short-time
bursts of gamma-ray events unrelated to an astrophysical source. The choice of the time window for these
searches is a compromise between signal and background, with typical time windows being 1–30 s.

In the present Universe, PBHs in certain mass ranges may constitute a non-negligible fraction of dark
matter7;10. Since the existence of stellar-mass black holes was recently confirmed during the first observa-
tional run of Advanced LIGO11, there has been a resurgence in support for a PBH component of the total
dark matter energy density (e.g., Refs.12–14). Limits placed thus far indicate that f(m), the fraction of dark
matter that is made up of PBHs, is . 10% over a range of masses7 (see Figure 1).

Figure 1: Dark matter fraction with
respect to PBHs15.

The luminosity of a PBH burst decreases as the squared distance to the PBH. However, at larger dis-
tances, the number of PBHs with given luminosity is expected to increase as the cube of the distance.
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Therefore, an observatory’s sensitivity to PBHs scales as the 3/2 power of its gamma-ray sensitivity. The
sensitivity of the Southern Wide-field Gamma-ray Observatory (SWGO; www.swgo.org) is expected to
be roughly ten times better than the current HAWC observatory. Assuming no PBH burst detection, the
upper limit on the local rate of PBH evaporation would thus be expected to improve by more than a factor of
30 compared to the HAWC limits, reaching the level of . 130 pc−3yr−1, as shown in Table 1 and Figure 2.

Experiment Burst Rate Upper Limit Optimal Search Duration Reference
Milagro 36000 pc−3yr−1 1s 16

VERITAS 22200 pc−3yr−1 30s 17
HESS 14000 pc−3yr−1 30s 18

Fermi-LAT 7200 pc−3yr−1 1.26× 108s 19
HAWC 3 yr. 3400 pc−3yr−1 10s 9
SWGO 10 yr. .90 pc−3yr−1 10s Estimated

Table 1: The strongest limits on the burst rate density of PBHs from the current generation of experiments,
compared to the capabilities of a next-generation observatory, SWGO, with 10 times better sensitivity than
HAWC. Note that the optimal search duration specifies the methodology of the search (optimizing for signal
while minimizing background) rather than being a physical PBH parameter.

Figure 2: Sensitivity curve predicted upper limits for PBHs with SWGO (based on the HAWC limits from
Ref. 9), with the upper limits from Whipple20, CYGNUS21, the Tibet Air Shower Array22, H.E.S.S.18,
VERITAS17, Fermi-LAT19, Milagro16, and HAWC9.
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