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A 21-cm based standard ruler at z ∼ 20
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Abstract: Direct measurements of the expansion rate H(z) of the universe are currently limited to low
redshifts z . 5. This creates a big gap between the local universe and the epoch of recombination, at
z ∼ 103, where new physics may present in many forms. Data from upcoming 21-cm surveys holds the
key to understanding the cosmic-dawn era, covering z ∼ 10 − 30, between us and the CMB. While many
astrophysical uncertainties plague 21-cm measurements, it has been recently discovered that the acoustic
physics of recombination becomes imprinted in the 21-cm signal through the relative velocity between dark
matter and baryons. This gives rise to velocity-induced acoustic oscillations (VAOs), with the acoustic scale
imprinted on them, which can be used as a standard ruler at cosmic dawn. Here we delineate the efforts that
ought to be undertaken to fully exploit this observable.
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Background

The expansion rate of our universe, parametrized through the Hubble rate H(z) at different redshifts z,
is an important cosmic observable. Its value is given by the entire energy content of the cosmos, and thus
carries information about not only the visible matter, but also the dark matter and dark energy. It is therefore
critical to measure H(z) throughout the entire history of the universe to understand its composition.

Current measurements ofH(z) are shown in Fig. 1. This expansion rate can be directly measured at low
z through different observables, such as standard candles and strong-lensing time delays1–3. Additionally,
the distribution of matter in the universe provides a handle on H(z) through the baryon acoustic oscillations
(BAOs), which are a standard ruler of a well-known length4;5. This allows different cosmic surveys of
matter fluctuations to measure H(z)6–9. Nevertheless, these measurements do not reach beyond z ∼ 5, as
there are no extensive surveys at such high redshifts10.

A Standard Ruler in 21-cm Data

A promising probe to reach higher redshifts is the 21-cm line of neutral hydrogen, which will provide
access to a large cosmic volume unobservable by other data sets. Of particular interest is the cosmic-dawn
era, roughly spanning the redshift range z = 10 − 30, which saw the formation of the first stars. These

0.03 0.1 0.3 1.0

100

30

300

k [Mpc-1]

Δ
2 (
k)

[m
K
2 ]

1 3 10

40

50

60

70

80

1+z

H
(z)

/(
1+
z)3

/2
[k
m
s-
1
M
pc

-
1 ]

BOSS DR12

BOSS DR14
HERA VAOs

DESI

SH0ES 2019

BOSS LyA1 3 10

40

50

60

70

80

1+z

H
(z)

/(
1+
z)3

/2
[k
m
s-
1
M
pc

-
1 ]

Figure 1: Left: Power spectrum of 21-cm fluctuations at z = 16, from Muñoz 201911. The gray line shows
the case without velocities, whereas the purple-dotted line is the VAO-only contribution, which has marked
acoustic oscillations. The black line shows the total power spectrum, which inherits said oscillations. The
VAOs act as a standard ruler, as they would be shifted if the size of the universe was different. As an
example, the red-dashed line has a value of H(z = 16) that is 10% smaller, which shifts the VAOs to larger
k. Errors in this plot correspond to three years of HERA data. Right: Summary of H(z) measurements
from Muñoz 201911. In dark-purple, green, and brown we show the current constraints from BAO analyses
of galaxies, quasars, and the Lyman-α forest, from the Baryon Oscillation Spectroscopic Survey (BOSS)6–9.
The red points show the projections using 21-cm observations of the velocity-induced acoustic oscillations
(VAOs) with HERA. The gray band represents the uncertainty from current CMB observations, assuming
standard cosmology, which is in clear tension with the distance-ladder measurement from the SupernovaH0

Equation of State (SH0ES) collaboration1, shown in blue. Finally, the dotted-violet points correspond to
forecasted BAO constraints from DESI10, which cannot reach the redshifts probed by VAOs. In both figures
the sound horizon is inferred from Planck CMB data12, except for the cyan line in the right panel, which has
a value of the sound horizon 7% smaller, as argued to resolve theH0 tension13;14, and can be easily detected
by HERA.
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stars filled the Universe with ultraviolet (UV) photons, exciting the hyperfine transition in neutral hydrogen
and allowing it to efficiently absorb 21-cm photons from the cosmic microwave background (CMB)15–17.
In addition, hydrogen was later reheated by the abundant X-rays produced by stellar formation, eventually
sourcing 21-cm emission against the CMB18–20. These two effects allow us to indirectly map the distribution
of the first star-forming galaxies during cosmic dawn through the 21-cm hydrogen line.

The first galaxies formed out of matter overdensities at small scales21–23, where baryons and dark matter
(DM) do not behave identically24;25. Only the baryons interact with photons, and thus suffer BAOs. This
generates relative velocities between the two fluids26, which fluctuate on acoustic scales, and strongly sup-
press the formation of the first stars due to their supersonic nature26–38. These velocities become imprinted
into the 21-cm power spectrum39–43, as shown in Fig. 1. This gives rise to a new type of “wiggles”: velocity-
induced acoustic oscillations (VAOs)43, with the same acoustic origin as the BAOs, albeit a different shape.
These VAOs provide a new standard ruler during cosmic dawn11.

The HERA interferometer, currently finishing construction, will be able to measure the expansion rate
using these VAOs for z = 15− 20, as shown in Fig. 1. Not only would this bridge the gap between the local
measurements at z . 5 and the CMB at z ∼ 103, but it can also help understand the origin of the tension
in measurements of the expansion rate today, dubbed H0. Local observations yield a value of H0 that is in
strong disagreement with that inferred from the CMB12. Different possible solutions to this tension involve
new physics, such as early dark energy 13;14;44;45, or decaying DM46;47. VAOs can provide a new standard
ruler to test these models, showing their potential for the study of new physics.

Observational Challenges

Measuring the 21-cm power spectrum accurately and precisely is difficult because of three separate—
but related—challenges. The first is sensitivity. The signals are faint, and therefore large telescopes are
necessary. The second is the issue of foreground contamination. Unlike for the CMB, foregrounds are
overwhelmingly bright at the relevant frequencies regardless of whether one looks within the Galactic plane
or towards the Galactic pole. Finally, an exquisite control of systematics (including but not limited to issues
such as unknown beam responses or mutual coupling problems between antennas) is required.

Each of the aforementioned problems is formidable in their own right, but the overall observational chal-
lenge lies in the pernicious combination of effects. For instance, the foregrounds are often considered to be
spectrally smooth, and are therefore in principle distinguishable from the cosmological signal, which is ex-
pected to fluctuate rapidly with frequency. However, low-level instrumental effects such as cable reflections
can corrupt this delicate separation, causing the observed foreground signals to pick up extra structure and
thus to masquerade as cosmological signal. This problem is compounded by the fact that the foregrounds
are not yet well-understood at the required levels of precision at these low frequencies, plus the fact that
to meet sensitivity requirements, 21-cm interferometers tend to be closely packed arrays. This regime of
dense, large-N arrays is unusual in traditional radio interferometry, and it is currently a open question as
to how to avoid instrument systematics in this limit. We emphasize, however, that the forecasts presented
above use only data outside the foreground “wedge”, and are expected to be clean of foregrounds.

Multiple investments are therefore needed for progress. For example, further empirical observations of
foregrounds are needed in order to construct better models for mitigation efforts. Test arrays explicitly de-
signed to study coupling effects (and other systematics) in a realistic in situ setting are required. Techniques
in precision polarization calibration should be tested on real data from large arrays. All of these efforts
(and others) should be coupled with a robust end-to-end simulation effort. This will require development
on the theory frontier (for example, with explorations of the robustness of VAO signatures in the context of
new feedback prescriptions). However, a robust understanding will also require the inclusion of carefully
modeled systematics that are accounted for in any mock constraints.
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