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Abstract: (maximum 200 words)
In a large class of slow roll inflation models, the inflaton tends to travel a large distance in the field space
during the inflation. Such an excursion can trigger significant changes in the dynamics of any spectator
sector which couples to the inflaton. One plausible scenario is that the evolution of the inflaton triggers a
first order phase transition in the spectator sector. We study the properties of the gravitational wave signals
produced by a first order phase transition during the inflation era. We show that a standing wave signature
can be observed for which the strength of the gravitational wave signal oscillates with its wavelength. We
show the range of this signal can be observed either by CMB B modes or directly by terrestrial or space
gravitational wave detectors. This oscillation feature of gravitational wave is generic for any approximately
instantaneous source during inflation. These results will be published in a set of papers in the near future.
We plan to submit a contributed paper to the Snowmass 21 summarizing the findings.
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Introduction

Gravitational waves (GWs), once produced, propagate freely through the universe and can bring us the
information of their origin as well as the history of the evolution of the universe. There are many proposals,
either terrestrial or space based, to detect stochastic GWs [1–15]. Possible sources of the primordial GWs
are inflation [16], first order phase transitions [17], and cosmic strings [18].

It is highly plausible that at the very early times there was an inflationary era. The simplest model of
inflation is the slow roll model with the inflaton field φ(x). To produce enough inflation the typical range of
the excursion of the inflaton field must be large, even up to O(MPlanck). As such, it may induce significant
changes in the dynamics of any spectator fields.This may happen though a direct coupling between the
inflaton field to the fields in the spectator sector. Another possibility of induced change is the change of
temperature during the inflation. Such changes can lead to dramatic events during the inflation, such as a
first order phase transition.

A robust signal of such a first order phase transition is the gravitational wave generated by the bubble
collisions. We would like to study the prospect of observing and interpreting such a signal.

Plan of our work

We have already obtained preliminary results. In the coming year, we plan to flesh out the details in a
set of publications which will form the basis for a contributed paper to the Snowmass studies.

The peak frequency of the GW signal is given by f = 1011 Hz× (β/Hinf)(Hinf/MPlanck)1/2(a?/aR),
where a? and aR are the scale factors corresponding to the completion of the phase transition and the
reheating, respectively. β−1 characterize the size of the bubble before the collision, and we should require it
is within the horizon, β/Hinf � 1. We will show that the GWs produced by bubble collisions in first order
phase transition during inflation can provide a unique oscillation signal in the power spectrum. This feature
stems from the approximate instantaneous nature of the end of the first order phase transition, which sets in
motion a set of gravitational wave modes which oscillate before they exit the horizon.

The strength of the peaks of the GW signal can be estimated as
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where ftoday is the frequency of in today’s universe and fp is the physical frequency at the time of the bubble
collision during inflation. ∆(fp) is the spectrum of GW from bubble collisions during first order phase
transition in flat space-time, which can be obtained from numerical simulations [19]. ∆ρL is the density of
the latent energy of the phase transition and ρinf is energy density of the inflation sector. Therefore at the
peak region ΩGW can be estimated to be around 10−7 × (Hinf/β)6 × (∆ρL/ρinf). In Eq. (1), the factor
S(fp) embodies the oscillatory pattern, and can be written as
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where ωp = 2πfp. In the preliminary study we found that at the peak region, the oscillation amplitude of
ΩGW can be order one.

The proposed GW observatories like DECIGO and BBO can reach the sensitivity of ΩGW ∼ 10−15 to
10−11. Based on the estimated the strength of the gravitational wave signal, it can potentially be detected by
future GW observatories, including DECIGO [3], BBO [7] and SKA [10].
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From the shape of the gravitational wave signal, both information of inflation and the phase transition
can be measured. We will demonstrate this through several examples, including models with different
couplings between the inflaton and the sector which undergoes the phase transition, as well as alternative
time evolution of the expansion rate during the inflation. Even though our analysis using a first order phase
transition as a model, it should be clear that the signal is generic for any approximately instantaneous GW
sources during the inflation.

If the phase transition happened in about 60 e-folds (Ne = 60) before the end of inflation, it would have
imprint on the CMB spectrum. In particular, we may see large B mode from CMB even in low scale inflation
models. We simulate the B mode power spectra induced by first order phase transition using the CLASS
package. For Ne= 58, 57 and 56 before the end of inflation, in which we can still see little wiggles induced
by the oscillation by the local nature of the bubble collision. However, since the spherical harmonics are not
orthogonal to the Fourier modes, we expect the oscillation pattern would be smeared.
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