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Abstract: Line intensity mapping is a powerful emerging observational technique to map the large scale
structure (LSS) over a wide range of scales and redshifts, largely inaccessible by other probes. We advocate
leveraging synergies between line intensity mapping (LIM) at millimeter wavelengths as a novel probe of
LSS, and the more well-established observations of optical galaxy surveys and weak lensing of the Cosmic
Microwave Background (CMB). We also discuss the complementarity of intensity maps with different lines,
in particular mm-wavelength lines and the 21-cm line. Combining various LSS probes, all tracing the
same underlying dark matter distribution while having different systematics and foregrounds, can lead to
significant enhancements in the scientific reach of individual probes. The expected scientific gain is the result
of mitigation of degeneracies between cosmological parameters, sample variance cancellation in some cases,
control of systematics and improved calibration of nuisance parameters. Mm-wave LIM over a redshift
range of 0 < z < 9 uniquely offers a multitude of cross-correlation opportunities at low and high redshifts,
which in turn can significantly improve the precision and robustness of the constraints on cosmological
parameters including primordial non-Gaussianity, the effective number of relativistic species, the sum of
neutrino masses, and the dark energy equation of state.
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Overview
The large-scale structure (LSS) of the universe carries invaluable information on the origin, evolution and
composition of the universe. Line intensity mapping (LIM)1;2 is an emerging observational technique to
map the LSS over a significant fraction of the sky and extended redshift epochs, largely inaccessible to
other probes of the LSS. Instead of resolving individual sources, LIM relies on detecting the cumulative
emission of molecular and atomic spectral lines from galaxies or the intergalactic medium. Measurements
of line frequency together with spatial fluctuations in the line intensity provide a 3D map of the underlying
dark matter distribution. In this letter we advocate mm-wave LIM of far-IR emission lines (CO rotational
ladder and [CII] ionized carbon fine structure line) as new cosmological probes. In particular, we highlight
the synergies and complementarity of mm-wavelength LIM with other probes of LSS, specifically with
optical galaxy surveys, CMB lensing and 21-cm intensity maps. For the science discussed here, we consider
ground-based mm-wavelength facilities, which can detect structure over the entire 0 < z < 10 redshift
range. We refer to3;4 for more details of the envisioned surveys.

Various probes of LSS trace the same underlying dark matter distribution using different tracers and obser-
vational techniques. Combinations of probes, including their cross-correlations, lead to significant enhance-
ment in precision and robustness of cosmological constraints from individual ones at no added cost. This
is due to (a) reducing statistical errors by adding more modes, breaking parameter degeneracies and cosmic
variance cancellation in some cases, (b) calibrating nuisance parameters such as galaxy/line bias and line
mean brightness temperature, and (c) better control of systematics and foregrounds which are expected to be
largely uncorrelated between different probes. Additionally, the cross-correlations between different probes
offer consistency tests of the theoretical models of the observables as well as of the individual data sets.

The large sky coverage, wide redshift range (including the ability to perform internal cross-correlations of
different tracers of the same structure), and high spectral resolution of mm-wave LIM makes it particularly
powerful for cross-correlations with other LSS probes. Below, we discuss some of the expected science
returns from three classes of cross-correlations, highlighting the distinctive advantages of mm-wave LIM.
While a large fraction of our discussions focuses on 2-point statistics, given the non-linear and non-Gaussian
nature of the LSS (in particular at lower redshifts and small scales), higher-order auto and cross statistics like
the bispectrum can significantly help to break degeneracies among cosmological parameters and nuisance
parameters, as well as probing physics not imprinted on the 2-point statistics like equilateral primordial
non-Gaussianity . In the context of LIM, while there have been a few recent studies considering 3-point
cross-statistics5;6, extensive work is still needed to fully explore their potential.

Expected Science Returns
1. Optical galaxy surveys: upcoming photometric and spectroscopic surveys (LSST7, DESI8, EU-

CLID9, SPHEREx10) will provide an unprecedented volume of high-precision data at z < 3. Cross-
correlation of this rich data with mm-wave LIM can significantly enhance the scientific return of
these surveys in several ways including (a) control of systematics and a more robust measurement
of cosmological parameters. For example, large-scale systematics (Galactic dust extinction, stellar
contamination, etc.), the main difficulties in constraining primordial non-Gaussianity from cluster-
ing power spectrum11, impact the cross-correlations less. With large sky and redshift coverage,
LIM well-matches both galaxy and quasar samples, (b) improved calibration of the redshift distri-
bution of galaxies in imaging surveys, reducing uncertainties in photometric redshift measurements
(“clustering-based” redshift estimation12–14). The strength of LIM for this task is twofold: accurate
measurement of redshifts (thanks to the high-precision measurement of the line frequencies), and wide
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redshift coverage extending well beyond the spectroscopic surveys. Furthermore, mm-wave LIM may
offer some advantages over 21cm for clustering redshifts: multiple CO lines in the same survey could
provide higher confidence for redshift estimation, and mm-wave receivers at 10 m-class dishes would
have significantly higher angular resolution (∼arcminute) than single-dish 21cm measurements.

2. 21cm intensity maps: cross-correlations of 21cm with other probes are expected to be much less
affected by Galactic foregrounds than 21cm auto-spectra5;15;16. At z > 3, intensity maps with other
lines (e.g., CO and [CII] lines) are the only tracers for cross-correlating with 21cm to provide a con-
vincing evidence of the cosmological origin of high-redshift 21cm detection. Furthermore, multi-line
cross correlations provide additional information on the Epoch of Reionization17 (e.g., constraining
the size of ionized bubbles by tracing the scale at which the cross correlation changes sign18 and
constraining properties of the ionizing sources), allowing astrophysics to be “marginalized out” in
cosmological constraints. Considering higher-order cross-statistics (ex. between [CII] and 21cm) can
help in reliably extracting 21 cm bias factors5.

3. CMB lensing maps: weak lensing of the CMB is theoretically a very clean signal but only pro-
vides information projected along the line of sight. Cross-correlation with other tracers of matter at
known redshifts would provide tomographic information of CMB lensing. Given the broad CMB
lensing kernel with significant weighting beyond z ∼ 2, cross-correlations with LIM offers distinct
advantages over spectroscopic galaxy surveys which are limited to z < 2. However, the potential
of this cross-correlation can only be unlocked if in intensity maps the large-scale modes along the
line of sight, that are highly contaminated by foregrounds, can be retrieved via reconstruction meth-
ods19–23. Cross-correlations between the reconstructed mm-wave LIM and upcoming CMB surveys
(Simons Observatory24 and CMB-S425), can significantly improve the constraints on cosmological
parameters by probing redshift evolution of growth of structure to constrain dark energy/modified
gravity and neutrino mass, by mitigating degeneracies between growth, line bias and mean bright-
ness temperature, and by allowing for efficient cosmic variance cancellation in constraints on local
non-Gaussianity and growth rate26–28.

Challenges and Roadmap
There have been a number of early detections of CO and CII line intensity in auto-spectra and cross-
correlations with other probes29–33. Several upcoming experiments (TIME34, CONCERTO35, COMAP36)
will provide higher-fidelity detection of CO and [CII] signal. However, due to their limited sensitivity, small
sky and frequency coverage, these first generation surveys will not provide cosmological constraints. To
realize the science goals discussed here, development of next generation of wide-field mm-wave facilities
with significantly higher detector counts is required, for which on-chip spectrometers provide a promising
path3;4. To fully take advantage of the power of the combined LSS probes, coordinated survey planning and
joint data analysis is essential. The design of the new line intensity facilities need maximal overlap in their
footprint on the sky with galaxy and CMB surveys.

One critical challenge affecting the usefulness of LIM cross-correlations, in particular with CMB and galaxy
lensing, is that the projected probes are only sensitive to large-scale modes along the line of sight, which
are contaminated by continuum foregrounds in LIM surveys. Reconstruction of the large-scale modes using
their impact on small-scale fluctuations19–23 can provide a mean to overcome this challenge and fully exploit
the potential of the combined statistics.

Furthermore, the strength of the line signal, its redshift evolution and its dependence on astrophysics is not
well-established and theoretical models of the signal differ by an order of magnitude. The first generation
of LIM surveys will play an important role in this direction by reducing the modeling uncertainties.
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