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Abstract:
Air showers, produced by the interaction of energetic cosmic rays with the atmosphere, are an excellent

alternative to study particle physics at energies beyond any human-made particle accelerator. For that, it is
necessary to identify first the mass composition of the primary cosmic ray (and its energy). None of the
existing high energy interaction models have been able to reproduce coherently all air shower observables
over the entire energy and zenith angle phase space. This is despite having tried all possible combinations
for the cosmic ray mass composition. This proposal outlines a self-consistent strategy to study high energy
particle interactions and identify the energy spectra and mass composition of cosmic rays. This strategy
involves the participation of different particle accelerators and astrophysics experiments. This is important
to cover the entire cosmic ray energy range and a larger phase-space of shower observables to probe the high
energy interaction models.
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Current high energy hadronic interaction models are not able to predict coherently all properties ob-
served in energetic air showers [1–6]. Are the extrapolations of particle properties to higher energies in-
correct? Are there any new particle physics phenomena at higher energies? What really happens when
energetic cosmic rays (protons or nuclei, E > 1018 eV) collide with nitrogen or oxygen nuclei at the top of
the atmosphere? It is very important to highlight that collider physics might never access these energies.

The goal of this proposal is to use a range of accelerator data in conjunction with observations from asto-
physical experiments in order to determine the properties of particle interactions at energies up to 1019 eV.
The astrophisical experiments considered are: Pierre Auger Observatory (Auger, Argentina) [7], Telescope
Array (TA, USA) [8], LHAASO (China) [9], HAWC [10] (Mexico), Yakutsk [11] (Russia), IceCube/IceTop
(South Pole) [12], Tibet ASgamma (China) [13] and ALAPCA [14], SWGO [15] and TAMBO [16] (South
America). This project will benefit from undergoing detector upgrades (AugerPrime [17–19] and TA×4 [20])
and from low energy detector enhancements (HEAT and AMIGA [21] and TALE [22]) in Auger and TA.
Archived data could be considered as well [23]. The expected outcomes include an enhanced capability to:

• probe properties of particle interactions at energies well beyond the reach of particle colliders and

• determine energy spectra and mass composition of cosmic rays in order to evaluate scenarios for the
origin of cosmic rays.

This proposal envisages the development of new knowledge at the forefront of two important fields, Particle
Physics and Astrophysics. The strength of this proposal is that the information collected by accelerator ex-
periments and astrophysical experiments will be used in a single analysis. By combining the data from these
detectors, hadronic interaction models will be constrained over an extensive energy range, from 1011 to 1019

eV. The population of different types of particles in the air shower (i.e. muons and electromagnetic parti-
cles) will be measured at different energy ranges and at different atmospheric depths. The ratio between
the muon and electromagnetic populations is closely tied to the cosmic ray composition and the particle
interaction properties. For example, LHAASO ground detectors will sample air showers earlier in the at-
mosphere, since it is located at an altitude of 4400 m.a.s.l., AugerPrime and TA are located at 1400 m and
IceCube/IceTop are located at 2835 m.a.s.l.. Other ground array experiments currently under design, such
as ALPACA, SWGO and TAMBO, have the potential to contribute significantly to this project. The energy
scale systematics from the experiments needs to be considered for the analysis [24]. The more experiments
operating within the same energy range, the better to reduce the effects of systematic uncertainties.

The GAMBIT collaboration has previously developed a global and modular beyond-the-standard-
model inference tool [25, 26], an open-source, modular package for performing global statistical fits of new
particle physics theories with a broad range of collider and astrophysics data. The tool includes interfaces
to state-of-the-art sampling algorithms adapted to both the Bayesian and frequentist statistical frameworks.
Currently it includes a wide range of data from the Large Hadron Collider, dark matter direct and indirect
searches, neutrino experiments, flavor physics, axion experiments and cosmological observations. In this
project, we will extend it to include data from the experiments listed above, which can then be used in
combined global fits with existing observables.

Methodology:

A diagram of the methodology is shown in Figure 1, and below is a step by step description.

a) Measure the air shower lateral distribution (at the corresponding detector level) for the muonic and
electromagnetic components. These measurements will be done for different cosmic ray zenithal
angles. Different ground arrays are optimized for different air shower energies and together they can
cover energies ranging from 1011 eV to 1019 eV.
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b) Measure the shower longitudinal profile using Cherenkov or fluorescence telescopes.

c) Using the package CORSIKA [27], perform simulations of air showers using each of the latest ver-
sions of popular high energy hadronic interaction models (e.g. QGSJET [28], EPOS [29], SIBYLL [30]).
The simulated showers will need to cover the entire phase space of energies and zenithal angles as
encountered in real air showers. A four-component mass composition of cosmic rays (p, He, N and
Fe) could be simulated. The computational time for this task could be challenging despite using a
supercomputer. However, we expect to share the simulation load between the different collaborations.

d) Use the dedicated detector simulations for each experiment to simulate the detection of the simulated
air showers (from step c). This step will generate the simulated data.

e) Repeat steps a) and b), but using the simulated data from step d).

f) Compare the observations from steps a) and b), with the corresponding expectations from step e)
and characterize the differences. This information will provide valuable insights for improving high
energy hadronic interaction models.

g) Explore modifications in the models of high-energy hadronic interactions in such a way that the sim-
ulation of an energy dependent composition mix of p, He, N and Fe, match coherently with the
observations in all experiments. The composition mix will change as a function of energy. The en-
ergy scale from each experiment will need to be normalized, so that all experiments will measure
the same energy spectra and compositions (some considerations should be taken to study possible
Northern/Southern sky differences).

Measurements
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Figure 1: Diagram of the conceptual framework. Data from particle accelerators and from other astrophysi-
cal experiments would or could be included in the project.

It is important to point out that there exist direct measurements (from satellite and balloon borne detec-
tors) of proton and Helium cosmic ray fluxes up to 1012 eV [31] and to up to 1013 eV for nuclei. These
measurements could be used to validate the above methodology at the lowest energy.
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