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Abstract:

Our understanding of particle scattering has dramatically evolved in the last couple of decades. Since the
first hints of QGP formation in heavy ion collisions at the end of last century, the idea that collisions at
sufficiently large energies undergo a color-deconfined phase has gained acceptance. There is still a long
way until we have confidence in our understanding of the different stages of these collisions: the initial
conditions, the onset of the QGP and its evolution under the influence of a QCD equation of state, and its
hadronization are still sources of uncertainty for the final observables. Accelerator experiments are not the
only point of attack to solve these puzzles: the idea that QGP may be formed in UHECR air showers has
recently gained momentum within the cosmic ray community, where it might come as a savior to solve the
muon excess puzzle that Lund hadronization based models are having difficulties to address. In this letter we
present some of these issues, and prepare the ground for the arrival of new computational tools of essential
value.

1



Ultra-high-energy (109 . E/GeV . 1011) cosmic ray (UHECR) collisions have center-of-mass ener-
gies (50 .

√
s/TeV . 450) well beyond those achieved at (wo)man-made colliders, and therefore provide

an invaluable probe of the Standard Model (SM) of particle physics1;2. One of the current puzzles in our
understanding of the SM lies in the formation of a thermal phase between the initial stages of a heavy-ion
collision and the final hadronization into detectable particles. As the energy and mass of the incoming nuclei
are increased, the maximum energy density reached during the interaction can easily surpass the typical en-
ergy density in a hadron, of about 1GeV/fm3. Under these circumstances, the quarks and gluons within the
hadrons undergo a transition into a color deconfined, highly coupled, locally thermalized low viscosity fluid
known as the Quark Gluon Plasma (QGP)3. An understanding of the properties of the QGP and its time
evolution, as well as the preceding and subsequent stages during a collision, are fundamental to account for
observables in UHECR-detection facilities and collider experiments4.

Even though we are still far from understanding the full picture of this kind of events, there are observ-
able effects that are agreeably associated with the formation of a QGP, such as: (i) suppression of hadron/jet
yield due to energy loss of partons passing through the formed QGP medium (jet quenching)5;6, (ii) thermal
enhancement of strange quarks7;8, (iii) azimuthal anisotropies (elliptic flow)9;10, (iv) enhancement of low-
pT photon yield11. Various proposed signatures of QGP have been observed in AuAu collisions at RHIC
and in PbPb collisions at the LHC12–22. The most recent and perhaps most intriguing evidence for QGP
formation emerged in ALICE observations, which show an enhancement of the yield ratio of strange and
multi-strange hadrons to charged pions as a function of multiplicity at mid-rapidity not only in PbPb and
XeXe collisions but also in pp and pPb scattering21;23.

One of the uncertainties in our description of this type of events stems from the lack of understanding of
the initial state which later evolves to a locally thermalized QGP. An accepted model of the initial conditions
in heavy-ion collisions consists in the formation of macroscopic color fields from the coherent behavior of
low x gluons, as their transverse sizes grow enough to make them overlap with each other. This idea is
referred to as the Color Glass Condensate (CGC)24;25. Models implementing this idea, such as the IP-
Glasma model26 or the KLN model27 can provide realizations of the initial conditions. The evolution to a
phase where hydrodynamics is applicable is not yet understood. Alternatives to coherent models like the
CGC might consider the collective effects of individual semi-hard parton collisions within pQCD as a way to
produce minijets which could be considered as the initial state for the QGP28;29, among other possibilities.
Both types of models are supposed to account for the large production of entropy, expected to occur in the
early stages of heavy-ion collisions. After the early stages that fix the initial conditions, the system evolves
into a locally equilibrated plasma. This process, not currently understood for the coherent initial conditions,
can be understood through kinetic theory for the incoherent ones. In the regime after this pre-thermalization
stage, (viscous) hydrodynamics drives the evolution of the QGP, in which lattice calculations are required to
provide a parametrization of the equation of state30. Finally, the effect of a collective statistical hadronization
in addition to the expected string fragmentation opens new venues for model builders31.

Despite the many gaps in our current description of heavy-ion collisions, experimental efforts are pro-
viding ever deeper insights into them. The Cosmic Ray community has a long history of contributions to
the High Energy Physics field. The highest energy cosmic rays currently observed by the Pierre Auger Ob-
servatory (Auger)32;33 and the Telescope Array (TA)34 show a significant discrepancy in the shower muon
content when compared to predictions of LHC-tuned hadronic event generators35. Since the predicted muon
component rises with energy, one may well argue that if the energy is under-estimated, that can entirely ex-
plain the so-called “muon puzzle.” Indeed, from the spectrum analysis in the common declination band
we know that in the energy range where the discrepancy has been observed there is a ∼ 15% difference
in energy scale between Auger and TA, which is even higher at highest energies36. However, any concern
about energy calibration has been addressed in the combined analysis of Auger hybrid measurements by
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looking at the zenith-angle dependence, so that the effects of energy calibration and muon excess could be
disentangled33. More recently, Auger findings have been confirmed studying air shower measurements over
a wide range of energies. The muon excess starts at E ∼ 108 GeV, increasing with a slope which was
found to be significant at about 8σ 37;38 when considering the hadronic event generators EPOS-LHC39 and
QGSJet-II.0440. The muon puzzle and the intriguing ALICE measurements provide a new example of the
UHECR� collider synergy, because the almost equal column-energy density in UHECR-air collisions and
LHC PbPb scattering41 allows for a direct tests of next-generation QGP event generators42.

Figure 3. Xmax and �Xmax versus primary energy. The experimental points reproduce the Auger Observatory data published in reference
[3]. The error bars (horizontal square brackets) correspond to statistical (systematic) uncertainties. The red curves (labelled CFitC)
correspond to simulations with AIRES + EPOS-LHC using an energy dependent combined composition (see text).
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Figure 4. hRµi/Eprim versus primary energy (II). The black circles and square horizontal brackets correspond to data published by the
Pierre Auger Observatory in reference [5] (figure 4). Circles error bars indicate statistical uncertainties, while the horizontal brackets
stand for systematic ones. The dashed blue lines correspond to least square fits to estimations of RMC

µ obtained from simulations with
fixed composition. The red squares (green circles) with solid lines (labelled CftCmp) correspond to estimations of RMC

µ obtained with
AIRES, linked to the hadronic models indicated in the graph, and using an energy dependent combined composition (see text). The
dashed curves represent the corresponding solid line ones, shifted by a given constant o↵set adjusted to match the experimental data
points. All the plotted values of RMC

µ were calculated using simulations with AIRES and following the procedure described in section
2.
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Figure 1: Auger data with statistical (•| )
and systematic ( [] ) uncertainties32. The
colored lines show estimations of RMC

µ

from AIRES43 simulations in three scenarios:
EPOS LHC/single composition (blue), EPOS
LHC/mixed composition (red), and Sibyll
2.3c44/mixed composition (green). A constant
shift is added to the solid red/green lines to
match the data better (red/green dashed lines).
Taken from45.

Explaining the muon puzzle is made more challenging by
the measurements of the distribution of the depth of shower
maximum, Xmax, and the fluctuations in the number of
muons46. A thorough phenomenological study has shown that
an unrivaled solution to the muon deficit, compatible with the
observedXmax distributions, is to reduce the transfer of energy
from the hadronic shower into the electromagnetic shower, by
reducing the production or decay of neutral pions47. Several
models have been proposed to accommodate this effect, in-
cluding those of particular interest here wherein strangeness
production suppresses the pion-to-kaon ratio47–52. In Fig. 1
we show a comparison between Monte Carlo (MC) simula-
tions and data45. The simulations have been carried out con-
sidering an inclination from the vertical of 67◦. For each set of
showers, the ratio RMC

µ = NMC
µ /NRef (which can be directly

compared with data) has been evaluated considering the aver-
age number of muons at ground level, with Eµ > 300 MeV
and takingNRef

µ = 1.455×107 32. The UHECR admixture fol-
lows Auger results on nuclear composition53. Altogether, we
see that the combination of a mix nuclear composition with
the Chiral Symmetry Restoration re-scaling entertained in47

can accommodate the muon discrepancy. An interesting idea
which has not yet been included in the UHECR simulations is the consideration of stabilized strange quark
matter54;55. Searches will be carried out by mini-EUSO56 and POEMMA57.

Besides the potential that QGP effects on cosmic ray showers might have to solve the muon problem,
the richness of phenomena observed in these events is worth studying on its own right. The QGP effects in
collisions described above together with forward signatures unaccessible to particle accelerators might be
accessible through cosmic ray observatories. This would create a new opportunity for the CR community to
provide results useful in accelerator physics and cosmology, where the QGP also plays a fundamental role.

The path towards these kind of analyses relies heavily on the availability of computational power and
its efficient use, a quickly evolving area where parallel and GPU computing and modular programming in
modern languages are proving essential. In this line, the re-developement of widely used FORTRAN based
tools like CORSIKA58 or HIJING59 into their new C++/Python forms CORSIKA 860;61 and HIJING++62

may pave the way for a new era in CR physics simulations where the implementations of new/modified
models like the ones considered here is easily supported. The implementation of HIJING++ with CR-
borne tools like AIRES and CORSIKA can bring a new valuable player into the hadronic models game for
QGP exploration and complement the efforts put on EPOS31;63. In addition, future data from the LHC in
the fixed-target mode64 from LHCb65 or ALICE66, from LHCf67, from FMS68, and from FASER69 will
provide invaluable information to address the muon problem and its possible QGP connection.

3



References

[1] L. A. Anchordoqui, “Ultra-High-Energy Cosmic Rays,” Phys. Rept. 801 (2019) 1–93,
arXiv:1807.09645 [astro-ph.HE].

[2] R. Alves Batista et al., “Open Questions in Cosmic-Ray Research at Ultrahigh Energies,” Front.
Astron. Space Sci. 6 (2019) 23, arXiv:1903.06714 [astro-ph.HE].

[3] E. V. Shuryak, “Quantum Chromodynamics and the Theory of Superdense Matter,” Phys. Rept. 61
(1980) 71–158.

[4] J. Bjorken, “Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region,” Phys.
Rev. D 27 (1983) 140–151.

[5] D. d’Enterria, Jet quenching, vol. 23, p. 471. 2010. arXiv:0902.2011 [nucl-ex].

[6] A. Majumder and M. Van Leeuwen, “The Theory and Phenomenology of Perturbative QCD Based Jet
Quenching,” Prog. Part. Nucl. Phys. 66 (2011) 41–92, arXiv:1002.2206 [hep-ph].

[7] J. Rafelski and B. Muller, “Strangeness Production in the Quark - Gluon Plasma,” Phys. Rev. Lett. 48
(1982) 1066. [Erratum: Phys.Rev.Lett. 56, 2334 (1986)].

[8] P. Koch, B. Muller, and J. Rafelski, “Strangeness in Relativistic Heavy Ion Collisions,” Phys. Rept.
142 (1986) 167–262.

[9] J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow,” Phys. Rev. D 46 (1992)
229–245.

[10] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of
Azimuthal particle distributions,” Z. Phys. C 70 (1996) 665–672, arXiv:hep-ph/9407282.

[11] F. Halzen and H. Liu, “Experimental Signatures of Phase Transition to Quark Matter in High-energy
Collisions of Nuclei,” Phys. Rev. D 25 (1982) 1842.

[12] E. V. Shuryak, “What RHIC experiments and theory tell us about properties of quark-gluon plasma?,”
Nucl. Phys. A 750 (2005) 64–83, arXiv:hep-ph/0405066.

[13] M. Gyulassy and L. McLerran, “New forms of QCD matter discovered at RHIC,” Nucl. Phys. A 750
(2005) 30–63, arXiv:nucl-th/0405013.

[14] STAR Collaboration, J. Adams et al., “Experimental and theoretical challenges in the search for the
quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC
collisions,” Nucl. Phys. A 757 (2005) 102–183, arXiv:nucl-ex/0501009.

[15] CMS Collaboration, S. Chatrchyan et al., “Observation and studies of jet quenching in PbPb
collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV,” Phys. Rev. C 84 (2011) 024906,
arXiv:1102.1957 [nucl-ex].

[16] ATLAS Collaboration, G. Aad et al., “Observation of a Centrality-Dependent Dijet Asymmetry in
Lead-Lead Collisions at

√
sNN = 2.77 TeV with the ATLAS Detector at the LHC,” Phys. Rev. Lett.

105 (2010) 252303, arXiv:1011.6182 [hep-ex].

4

http://dx.doi.org/10.1016/j.physrep.2019.01.002
http://arxiv.org/abs/1807.09645
http://dx.doi.org/10.3389/fspas.2019.00023
http://dx.doi.org/10.3389/fspas.2019.00023
http://arxiv.org/abs/1903.06714
http://dx.doi.org/10.1016/0370-1573(80)90105-2
http://dx.doi.org/10.1016/0370-1573(80)90105-2
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1007/978-3-642-01539-7_16
http://arxiv.org/abs/0902.2011
http://dx.doi.org/10.1016/j.ppnp.2010.09.001
http://arxiv.org/abs/1002.2206
http://dx.doi.org/10.1103/PhysRevLett.48.1066
http://dx.doi.org/10.1103/PhysRevLett.48.1066
http://dx.doi.org/10.1016/0370-1573(86)90096-7
http://dx.doi.org/10.1016/0370-1573(86)90096-7
http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1103/PhysRevD.46.229
http://dx.doi.org/10.1007/s002880050141
http://arxiv.org/abs/hep-ph/9407282
http://dx.doi.org/10.1103/PhysRevD.25.1842
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.022
http://arxiv.org/abs/hep-ph/0405066
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://dx.doi.org/10.1016/j.nuclphysa.2004.10.034
http://arxiv.org/abs/nucl-th/0405013
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://arxiv.org/abs/nucl-ex/0501009
http://dx.doi.org/10.1103/PhysRevC.84.024906
http://arxiv.org/abs/1102.1957
http://dx.doi.org/10.1103/PhysRevLett.105.252303
http://dx.doi.org/10.1103/PhysRevLett.105.252303
http://arxiv.org/abs/1011.6182


[17] CMS Collaboration, S. Chatrchyan et al., “Jet momentum dependence of jet quenching in PbPb
collisions at

√
sNN = 2.76 TeV,” Phys. Lett. B 712 (2012) 176–197, arXiv:1202.5022

[nucl-ex].

[18] CMS Collaboration, S. Chatrchyan et al., “Studies of jet quenching using isolated-photon+jet
correlations in PbPb and pp collisions at

√
sNN = 2.76 TeV,” Phys. Lett. B 718 (2013) 773–794,

arXiv:1205.0206 [nucl-ex].

[19] CMS Collaboration, S. Chatrchyan et al., “Evidence of b-Jet Quenching in PbPb Collisions at√
sNN = 2.76 TeV,” Phys. Rev. Lett. 113 no. 13, (2014) 132301, arXiv:1312.4198

[nucl-ex]. [Erratum: Phys.Rev.Lett. 115, 029903 (2015)].
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