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Abstract:

The proposed ARIANNA-200 neutrino detector, located at sea-level on the Ross Ice Shelf, Antarctica,
consists of 200 autonomous and independent detector stations separated by 1 kilometer in a uniform
triangular mesh, and serves to inform the planning of the future IceCube-Gen2 project. The primary
science mission of ARTANNA-200 is to search for sources of neutrinos with energies greater than
10'7 eV, complementing the reach of IceCube. An ARIANNA observation of a neutrino source would
provide strong insight into the enigmatic sources of cosmic rays. ARIANNA observes the radio
emission from high energy neutrino interactions in the Antarctic ice. Among radio based concepts
under current investigation, ARIANNA-200 would uniquely survey the vast majority of the southern
sky at any instant in time, and an important region of the northern sky, by virtue of its location on the
surface of the Ross Ice Shelf in Antarctica. The broad sky coverage is specific to the Moore’s Bay
site, and makes ARITANNA-200 ideally suited to contribute to the multi-messenger thrust by the US
National Science Foundation, Windows on the Universe — Multi-Messenger Astrophysics, providing
capabilities to observe explosive sources from unknown directions. The ARIANNA architecture is
designed to measure the angular direction to within 3° for every neutrino candidate, which too plays
an important role in the pursuit of multi-messenger observations of astrophysical sources.



Science enabled by ARIANNA-200

The ARIANNA-200 neutrino detector!, located at sea-level on the Ross Ice Shelf, Antarctica,
consists of 200 autonomous and independent detector stations separated by 1 kilometer in a uniform
triangular mesh. As a consequence of the reflection properties at the ice-water interface at the bottom
of the Ross Ice Shelf, ARIANNA-200 views almost the entire southern sky, including the galactic
center, with nearly uniform exposure. ARIANNA-200 (Figure 1, left) exceeds the instantaneous sky
coverage of all other radio-based neutrino detectors being studied. It’s broad sky coverage is ideally
suited to contribute to multi-messenger campaigns initiated by gravitational-wave detectors, gamma-
ray telescopes, cosmic ray observatories, and neutrino telescopes targeting lower energies such as
IceCube? in the Southern hemisphere, and KM3NeT? and Baikal-GVD* in the Northern hemisphere.

The sky coverage of ARTANNA-200 augments the point source capabilities of IceCube. At high
neutrino energies (E, > ~10'*eV), the Earth becomes opaque. Thus, at higher energies, both Ice-
Cube and ARTANNA-200 observe mostly the Southern sky, leading to a substantial overlap in sky
coverage. ARIANNA-200 will observe about one event for every three sources of the highest energy
cosmic rays observed by IceCube, assuming neutrino production above 10'® eV with an unbroken
power law up to 102° eV proportional to £, 2. A spatially and temporally coincident detection of the
same source would establish a hard spectrum up to an energy of 10'® eV or greater, and provide a
direct link to an accelerator of the very highest energy cosmic rays. The model parameter-space for
neutrino fluxes of sources is large. Some models suggest that the flux from some neutrino sources
may be enhanced at energies close to maximum sensitivity of ARIANNA-200, for example>~’, while
others predict no observable emission. It is quite possible that new experimental results will be able
to guide theory in this respect.

The simultaneous observation of a point source by IceCube and ARIANNA-200 in different en-
ergy ranges would create transformational progress in understanding the half-century old mystery of
cosmic rays. Cosmic rays possess extraordinary high energy, but we do not know the sources of their
power, nor the physics responsible for their acceleration. The ARIANNA architecture is designed to
measure the angular direction to within 3° or better for every neutrino candidate, which too plays an
important role in the pursuit of multi-messenger observations of astrophysical sources. Perhaps as few
as one neutrino detected by ARIANNA-200, correlated in time and direction with an explosive event
observed by IceCube or in some other messenger channel, would provide conclusive steps forward in
field of cosmic ray astrophysics.

Apart from the astrophysical neutrinos produced directly at the sources of cosmic rays, cosmo-
genic neutrinos are produced by the interaction of UHECR protons and cosmic microwave pho-
tons®!!. These interactions typically still happen close to the source, and the neutrino preserves the
cosmic-ray direction. Thus, also cosmogenic neutrinos can reveal the sources of cosmic rays. They
have not been detected so far. In 10 years of operation, ARIANNA-200 will be sensitive to cosmo-
genic fluxes at a level of E2® < 4 x 1072 GeVem ™25~ tsr™ 1, corresponding to ~10% of the current
limits for neutrino energies above 10'® eV. The observation or upper limit from ARIANNA-200 will
constrain model parameters, such as source evolution, energy cutoff and cosmic ray composition.

With a combined fit to the energy spectrum and X,,x distribution (an estimator of the cosmic-
ray mass) of UHECR data, the parameters of cosmic-ray sources are estimated from which the cos-
mogenic neutrino flux can be predicted. However, the analysis is based on a number of simplified
assumptions (e.g. a continuous distribution of identical sources and rigidity dependent maximum
energies) and the results possess large uncertainties. For example, analysis of the data of the Pierre
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Figure 1: Left: Instantaneous sky coverage of ARIANNA-200 at Moore’s Bay, Antarctica (Blue),
plotted in Right Ascension (RA) and Declination (Dec) at one particular time of the day. For compar-
ison, the sky coverage is shown for radio-based neutrino detectors located at Summit Station in Green-
land (gold) and South Pole, Antarctica (green hatch). Right: Expected sensitivity of the ARIANNA-
200 detector in one-decade energy bins calculated using NuRadioMC '® for 10 years of operation
assuming a uptime of 100%. Also shown is the measured astrophysical neutrino flux from IceCube
using the high-energy starting event (HESE) selection!” and using a muon neutrino sample '%, limits
from existing experiments (IceCube '”, Auger?’ and Anita®!"). The color shaded bands show predic-
tions using a simple astrophysical model with commonly discussed source evolution parameters based
on cosmic ray data of the Telescope Array (blue) '?? and the Pierre Auger Observatory (orange)?>.
The dashed line shows a slightly more complex model with an additional small proton component .
The gray band indicates the range of theoretical uncertainties on model parameters '°.

Auger Observatory located in Argentina'%!? results in substantial differences to an analysis of the

data of the Telescope Array (TA) located in Utah'4. The former favors a heavy composition with a
low rigidity cutoff at the source resulting in a small cosmogenic neutrino flux, whereas the former
favors a high rigidity cutoff and a slightly lighter source composition resulting in a much higher neu-
trino flux. Furthermore, data of the Pierre Auger Observatory is compatible with an additional proton
contribution resulting in substantial increase in the expected neutrino flux .

We summarize the different predictions of cosmogenic neutrinos as well as the predicted ARIANNA-
200 sensitivity, and results from existing experiments in Fig. 1, (right). The prediction from TA data
is well within the reach of ARTANNA-200. For the more pessimistic source parameters derived from
Auger data, ARIANNA-200 may observe cosmogenic neutrinos if the proton fraction is larger than
20% of the total particle number. Thus, ARIANNA-200 will provide new insights into the properties
of cosmic-ray sources.

The ARIANNA-200 approach provides a wide 27 field of view of mostly the Southern Sky,
and the largest overlap with IceCube-Gen2?* of any location discussed by the community. The au-
tonomous architecture employed by ARIANNA-200 has successfully operated at the South Pole, and
is a viable technological option for devices located at other locations in polar regions, such as Green-
land.
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