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Abstract:
The radio technique for cosmic-ray air showers has recently reached maturity and is now applicable to
the open questions regarding the origin of the highest-energy cosmic rays and the particle physics in air
showers. Arrays of digital radio antennas provide for accurate measurements of the arrival direction, the
energy content, and atmospheric depth of the electromagnetic component of air showers. Thanks to recent
developments in the analysis and calibration techniques as well as in the theoretical understanding of the
radio emission, the accuracy achieved starts to be competitive with the leading optical techniques, but with
the radio technique not being restricted to clear nights. Stand-alone detectors may provide unprecedented
exposure for affordable cost, and do require further R&D. Hybrid arrays featuring particle (in particular
muons) and radio detection promise to enhance the total measurement accuracy beyond the state of the art –
a key need for future progress in many areas of cosmic-ray physics, such as the search for the most energetic
Galactic and extragalactic sources as well as understanding the muon problem of hadronic interactions at
energies beyond the reach of the LHC. Finally, the radio technique can be used to search for ultra-high-
energy neutrinos, photons, and new physics.
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Introduction

With a number of experimental designs, radio detection of cosmic rays can be a key contributor to many
scientific questions in high-energy particle astrophysics which all require higher statistics and/or higher
measurement accuracy of extensive air showers1–7. The development of the radio technique for cosmic rays
made significant progress during the last decade8;9. The theoretical understanding of the radio emission by
air showers has matured, and state-of-the-art simulation codes10–13 are consistent with measurements by
current antenna arrays14–16. Several hybrid arrays of radio antennas and particle detectors operate reliably,
and provide precise measurements of the most important shower parameters: the arrival direction17–19, the
energy20–23, and the atmospheric depth of the shower maximum, Xmax

16;24–26, which is sensitive to the
mass of the primary particle. The radio technique offers the benefit of providing calorimetric energy and
Xmax measurements around the clock, not being restricted to clear nights as traditional optical techniques.
In particular for self-triggering, the development of stand-alone radio arrays27–31 needs to be continued
during the next decade32–35. Nevertheless, with existing and planned hybrid arrays, the radio technique can
already make an important contribution to open questions in cosmic-ray and air-shower physics1;2;36.

High-Energy Physics in Cosmic-Ray Air Showers

State-of-the-art hadronic interaction models exhibit puzzling deficiencies and it is not understood, in par-
ticular, whether they are related to new physics. The most prominent problem is a deficit in the predicted
muon content in showers at energies & 1017 eV37, which is where the radio technique becomes efficient.
In particular, radio arrays feature an accurate calorimetric measurement of the size of the electromagnetic
shower component21;38;39. In contrast to the particles of the electromagnetic component, the radio emis-
sion is not absorbed in the atmosphere. Since also the high-energy muons of air showers mostly survive
until they reach the ground, a radio-muon hybrid detector is ideal to study the muon problem of hadronic
interaction models even for inclined, fully developed showers40. This may fix one of the main problems
in experimental tests of hadronic interaction models. Due to shower-to-shower fluctuations, only statistical
distributions can be compared to models, thus, losing testing power by averaging over the mixed compo-
sition of primary particles. With Xmax

23;24;41 and the energy constrained by radio, and the per-event mass
separation of radio-muon hybrid arrays (Fig. 1), this problem can be reduced. While this in principle can
also be done by combining fluorescence and muon detectors, a hybrid array of radio and particle detectors
will be operational 24/7 and provide the required statistics at the highest energies at much lower cost.

Identification of the Primary Particle

The same features useful for the test of hadronic interaction models (calorimetric measurement and sensi-
tivity to Xmax), can also be utilized for more accurate measurements of the mass composition of cosmic
rays, which is essential for many scientific questions in particle astrophysics. Since recent measurements
confirmed that cosmic rays consist of a mixture of protons and nuclei of different masses varying throughout
the complete probed energy range43;44, mass sensitivity has become a key demand of cosmic-ray observato-
ries. Due to statistical shower-to-shower fluctuations, improving the precision of a single parameter (Xmax)
will provide only a limited improvement for the accuracy of the mass. However, a boost in accuracy for the
per-event estimation of the mass is expected by combining Xmax with the orthogonal mass sensitivity of the
muon content of the same air shower (Fig. 1). This will enable improved predictions for various types of
cosmic-ray models, such as scenarios of their origin or for their propagation in extragalactic and Galactic
space. It will, thus, help to restrict scenarios for the yet unknown origin of the most energetic Galactic
(presumably up to about 1018 eV) and extragalactic cosmic rays (up to at least a few 10 20 eV).
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Figure 1: Left: Figure of merit as a measure for the mass-separation power over zenith angle for the combi-
nations of muon detectors with either radio or electron detectors on ground and for Xmax. Combining radio
and muon detectors brings the potential of unprecedented accuracy for the mass of the primary particle40.
Right: 90% containment contours of the muon number and the depth of the shower maximum, Xmax, at
10 19 eV for various hadronic interaction models. For all interaction models, the simultaneous measurement
of the muon number and Xmax will improve the accuracy on the type of the primary particle42.

A better measurement of the mass composition and absolute energy scale by radio21;45 will also have
important benefits for multi-messenger particle astrophysics. Next to hadronic interaction models, these
are the main uncertainties in the calculation of atmospheric lepton fluxes relevant for high-energy neutrino
observatories46. Radio detection of air showers can contribute to understanding the flux of PeV muons47

and the fraction of atmospheric neutrinos originating from nuclei instead of protons48;49. The per-event
mass sensitivity from combining radio and muon detection in hybrid arrays will help us to search for ultra-
high-energy sources, e.g., by the measurement of expected mass-dependent anisotropies or proton-enriched
cosmic-ray astronomy50–52. Especially with the high angular resolution radio arrays can provide, the dis-
covery of ultra-high-energy photons (photon showers are muon-poor, but have a strong radio signal) may
enable a direct identification of the sources and tests of fundamental physics related to these photons. Un-
derstanding the sources is essential for any solid investigation of the high-energy physics in these sources
and of the high-energy interactions during the propagation of cosmic rays.

Future of the Radio Technique for Air Showers

Last but not least, there are many other applications of the radio detection technique relevant for high-
energy physics. Very dense antenna arrays can measure the radio emission in unprecedented detail enabling
a more precise study of the development of air showers53. Stand-alone radio detectors have the potential for
apertures beyond the state-of-the-art (∼ 10, 000 km2sr), and can be realized either by huge arrays33 or by
observation from mountains35;54. This can enable measurements at ultra-high-energies with higher statistics
and at higher energies than achieved today, and will provide discovery potential for new physics3;4, EeV
photons and neutrinos (see dedicated LOI6). Radio detection from balloons34;55 has a lower exposure,
but provides discovery potential for new physics by looking for upward-going events caused by particles
penetrating the Earth56;57. Therefore, it is essential to continue ongoing developments for such stand-alone
approaches as a long-term strategy, while radio-muon hybrid arrays promise to provide essential progress in
air-shower and cosmic-ray physics already during the next decade.
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