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Abstract:
The Payload for Ultrahigh Energy Observations (PUEO) is a proposed NASA Long Duration Balloon
(LDB) payload that will launch from McMurdo Station, Antarctica in December 2023. PUEO detects
radio emission from interactions of extremely high-energy cosmic particles, including neutrinos and cosmic
rays. PUEO is especially well-suited for discovering the highest energy neutrinos and for multi-messenger
point-source and transient searches. Because they view the largest target volumes for neutrino interactions,
balloon-borne experiments such as PUEO access the rare fluxes expected at the highest neutrino energies.
PUEO builds on the success of ANITA, employing the same detection principle, but with a new payload
design that capitalizes on recent technological developments to lower the energy threshold and improve
sensitivity to neutrinos and cosmic rays by an order of magnitude.
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1 Science Case

High-energy neutrino astrophysics reveals a unique view of the most energetic particles from cosmic dis-
tances. Neutrinos travel virtually unimpeded through the universe, making them unique messenger particles
for cosmic sources, and carrying information about very distant sources that would otherwise be unavailable.
Neutrinos seen directly from sources are indicators of hadronic processes within the accelerators. PUEO
will have the world’s best sensitivity to neutrinos in a regime where sources might reach their ultimate accel-
eration energies. Unlike cosmic rays, neutrinos are not deflected by magnetic fields along the journey from
their source, and so can be observed coincident in time and direction with photons or gravitational waves
from the same source.

While the high-energy spectrum of astrophysical neutrinos has been observed by IceCube up to a
few PeV1–7, the spectral shape at higher energies is unknown, but is expected to include higher energy
populations of neutrinos created by cosmic-ray-photon interactions. These interactions may occur from
within the same sources generating the cosmic rays8–11, or from cosmic-ray interactions with photons within
about 50-200 Mpc of their source (the so-called Greisen-Zatsepin-Kuzmin (GZK) process12;13), generating
cosmogenic neutrinos14.

PUEO will lower the energy threshold of balloon-borne neutrino experiments to overlap with limits
from ground-based observatories at 1018.5 eV. Above that energy, the ∼ 106 km3 instantaneous ice volume
visible to balloon experiments combined with PUEO’s improved sensitivity over ANITA will lead to either
the best constraints or a first detection in this regime. Of particular interest to PUEO are models with a
sizable proton component, very large maximum acceleration energies, and with sources more populous at
large redshifts15;16. Conversely, UHE neutrino flux measurements uniquely probe cosmic ray acceleration
and mass composition17;18, and complement cosmic rays in source identification14;15;19–33.

PUEO will additionally have the unique capability to search for transient sources of neutrinos with
the largest instantaneous effective area of any instrument in its limited field of view. While the ∼ 30 day
exposures of PUEO and ANITA are small compared to the years of exposure from ground-based instruments
like Auger34 and IceCube7, the large visible volume available to PUEO makes it uniquely suited to detecting
transients from sources35–65;65–84 with low flux in the few degrees near the horizon of the payload.

Tau neutrinos are observable by PUEO through a different channel wherein a tau neutrino interaction
in the Earth results in a tau lepton exiting the ice and decaying in the air to produce observable radio
emission34;85–93. For PUEO, this tau neutrino signature via air showers surpasses the Askaryan signature in
importance below 1017.5 eV.

PUEO will also probe fundamental physics. The discovery of UHE neutrinos would allow a mea-
surement of the neutrino-nucleon interaction cross section94;95, which is sensitive to physics beyond the
Standard Model96;97 and the nucleus at small scales98, in regions of parameters space that are inaccessible
by the Large Hadron Collider. We expect that once events are observed, PUEO could loosely constrain cross
sections at ∼ 100 TeV center-of-mass energies based on the energy-dependent zenith angle distribution of
the events94;95;99–101.

2 Technical Approach

PUEO builds significantly on the heritage from the four successful flights of the ANtarctic Impulsive Tran-
sient Antenna (ANITA)102–106 to scan the 1.5M km3 of Antarctic ice within its horizon with unprecedented
sensitivity. PUEO leverages recent technological developments to lower thresholds107–110 with a novel trig-
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ger design and an expanded array to achieve an order-of-magnitude leap forward in sensitivity to rare fluxes
below 1019 eV and a factor of several times improvement on the world’s best sensitivity to fluxes at 1020 eV.

Figure 1: A rendering of the PUEO
gondola.

The overall concept of the PUEO payload is similar to that of
ANITA. Much of the mechanical and RF design, the power sys-
tems, attitude and location systems, and data storage and transfer
is inherited from ANITA. However, PUEO represents a significant
improvement in sensitivity compared to the ANITA payload. This is
achieved by: 1) an interferometric phased array trigger, which low-
ers the trigger threshold compared to the ANITA analog trigger, and
increases the expected neutrino and cosmic-ray acceptance, 2) more
than doubling the antenna collecting area above 300 MHz. This is
enabled by increasing the low-frequency cutoff of the antennas from
180 MHz for ANITA-IV to 300 MHz for PUEO, which reduces the
size of the antennas by a factor of two in area. We have also added a
drop-down system of 24 antennas, to further increase the collecting
area, especially for EAS events, 3) the addition of a low-frequency
instrument designed to target detection of radio emission from air
showers, 4) significantly improved ability to filter man-made noise
in real time at the trigger level, and 5) significantly improved point-
ing resolution, especially in elevation, from a combination of bet-
ter orientation measurements and a larger physical vertical antenna
baseline. Improved elevation pointing resolution will allow us to im-
prove analysis efficiency and reduce contamination from man-made
backgrounds.

PUEO receives radio signals from cosmic particles using
120 dual-polarized quad-ridged horn antennas, sensitive between
300 MHz and 1500 MHz. Radio signals observed by these antennas
are amplified, digitized111 above the Nyquist frequency, and a trig-
ger decision is made using coherent combinations of the digitized channels in real time to determine which
data are saved to disk. In addition, PUEO will host a separate low-frequency instrument that will target
detection of radio emission from air showers produced by cosmic rays, tau leptons created in neutrino inter-
actions, and possibly other more exotic particles. The low-frequency instrument will consist of an additional
array of antennas that will drop down below the main gondola after launch.

3 Summary

PUEO is a discovery instrument that will significantly improve the reach of neutrino experiments at the
highest energies, and is well-suited for multi-messenger point source and transient observations. PUEO
takes advantage of technological developments coupled with a new design to produce a new payload that
will improve sensitivity to the highest energy neutrinos by an order of magnitude.
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