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Abstract: The rise of time-domain astrophysics at TeV energies is an unprecedented opportunity to study
transient phenomena at the highest energies. This provides a window to probe models of Lorentz Invariance
Violation in previously unexplored parameter spaces. The Southern Wide-field Gamma-ray Observatory
(SWGO), a TeV observatory with sensitivity above the 100 GeV range, allows for all-sky coverage of the
brightest gamma-ray bursts (GRBs) reaching Earth, and provides the chance to detect the highest-energy
photons GRBs produce. This allows us to test photon dispersion relations at TeV energies, something
previously unexplored, and requiring transient observations with short durations, at long distances, and
measured to high energies— such as pulsars or GRBs.

∗This Letter contains excerpts and material from White Papers submitted for the Astro2020 Decadal Survey 1;2
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Precise measurements of very-high-energy photons can be used as a test of the Lorentz symmetry3–11.
As with any other fundamental principle, exploring its limits of validity has been an important motivation
for theoretical and experimental research. Moreover, some Lorentz Invariance Violation (LIV) can be moti-
vated as a possible consequence of theories beyond the Standard Model, such as quantum gravity or string
theory12–21.

Recent studies have used high-energy photons from steady astrophysical sources to constrain LIV22;23.
However, observation of astrophysical transients can also give competitive limits to LIV processes, without
the assumption of superluminal LIV processes as is needed for the photon decay-based constraints. LIV is
usually parameterized as an isotropic correction to the photon dispersion relation24:
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Because the speed of photons is no longer constant with energy, photons emitted simultaneously will
arrive at the observer spread over a time ∆t, which depends on the energy of the photons produced and the
distance to the source. For Galactic sources such as pulsars, this leads to a time delay between photons of
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where D is the distance to the source and Emax and Emin are the maximum and minimum energy of the
observation, respectively. For objects at cosmological distances, one must account for the redshift-dependent
distance, but also the redshift of the photons traveling from the source. This yields a time delay:25
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where ΩΛ is the dark energy density, ΩM is the matter density, and H0 is the Hubble parameter.

To get strong limits on LIV, you must have observations with short durations, at long distances, and
measured to high energies. Two main source classes considered for such constraints are pulsars (which
have short distances but extremely short durations) and gamma-ray bursts (GRBs) (which have fairly short
durations and occur at extremely long distances).

An ideal observatory to search for these transient sources is the Southern Wide-field Gamma-ray Ob-
servatory (SWGO)26–28. SWGO is planned to be located in the Southern Hemisphere, with an order-
of-magnitude better sensitivity than the current High-Altitude Water Cherenkov (HAWC) Observatory29.
SWGO will build on the HAWC water Cherenkov design in order to have a wide field-of-view, which will
observe ∼ 2/3 of the sky every day with a near-100% duty cycle. Additionally, the near-continuous duty
cycle of this detector design makes it ideal for searches both for rare, isotropically distributed sources, like
GRBs, and steady pulsing sources that require long observation time, like pulsars. The SWGO design also
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Source Experiment E
(1)
LIV Limit∗ E

(2)
LIV Limit∗ Distance ∆t Emax

GRB090510 Fermi-LAT10 9.1 · 1019 1.3 · 1011 z = 0.903 combined methods
Crab Nebula Tibet23 – 4.1 · 1014 2 kpc energy methods†
Multi-source HAWC22 2.2 · 1022 1.2 · 1015 1.8–2.4 kpc energy methods†
SWGO Pulsar SWGO 2.0 · 1018 1.8 · 1011 2 kpc 1 ms 10 TeV
SWGO GRB SWGO 6.2 · 1021 3.5 · 1012 z = 0.25 10 ms 1 TeV

Table 1: Compilation of the most stringent results on LIV published and the potential of the SWGO obser-
vatory, based on the reference scenarios described above.
∗ Limits are given in GeV
† Numbers for energy methods are for superluminal LIV only

will have the best sensitivity to multi-TeV photons in the Southern Hemisphere, giving it a long lever-arm
on Emax with which to constrain LIV.

One feature that is common amongst pulsars (especially millisecond pulsars) and GRBs are fine temporal
features in their emission. This is key to associating photons with each other and determining the ∆t
over which we consider the photons to be dispersed. Since photons become rarer (due to their power-law
distribution) at higher energies, it becomes harder to identify the photons as being associated in time, this
means that the detection of emission with high temporal accuracy at the lowest energies available (e.g. from
satellite detection) can become key to associating a high-energy photon with a particular temporal feature
in a pulsar pulse, or within a fast-rise-exponential-decay pulse in a GRB. This could constrain the time
lag between photos to better than 1 ms from a GRB30. With these sorts of features, even a handful of
TeV gamma rays seen from a GRB at a redshift of 0.25 would would be competitive with limits based on
photon decay (See Table 1). Similarly, in pulsars, it is possible that SWGO will see features on millisecond
timescales with its good sensitivity to >10 TeV photons31.

Leveraging transient astrophysical phenomena to constrain small effects like those of LIV requires an
observatory that can look across the sky to monitor repeating sources and search for rare events. High-
energy reach is also needed to view these sources to the highest energies possible. SWGO, with its wide
field-of-view, near-continuous duty cycle, and unprecedented high-energy sensitivity, is the ideal tool for
this search.
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