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Abstract: The existence of protons and nuclei with kinetic energies at the joule scale – up to 1020 eV,
known as ultra-high-energy cosmic rays (UHECRs), is one of the most intriguing unsolved problems in
modern astrophysics. Clarifying their origin would lead to understanding the most energetic and violent
phenomena in the Universe. Precise measurement of their energy spectrum is of special importance: its
absolute scale and shape are related to the distribution of the sources, to the production and acceleration
mechanisms in non-thermal regions of high-energy phenomena, and to the propagation from the sources to
the Earth. Moreover, the energy range above a few 1020 eV remains unexplored, due to the limited exposure
of the current experiments. Investigating this region will allow new physics to be explored, such as the
possibility of Planck scale Lorentz invariance violation (LIV). In this Letter of Interest, we summarize the
experimental progress in the last decades, the present status, and prospects and proposals for future studies.
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The physics case

Soon after the discovery of the cosmic microwave background (CMB) radiation, Greisen, and Zatsepin
and Kuzmin independently, predicted that the cosmic-ray spectrum should be strongly suppressed at far
distances from their sources somewhere below 1020 eV due to energy loss processes with CMB photons1,2.
The so-called GZK suppression was not experimentally confirmed for more than fifty years due to the
extremely low flux of UHECRs: about one particle per year per 100 square kilometers. The Pierre Auger
Observatory (Auger)3 and Telescope Array (TA)4,5 are the largest CR observatories ever built and cover
areas of 3000 km2 and 700 km2 respectively. The two observatories are based on the so-called hybrid
approach, where the bulk of the events is obtained with an array of detectors deployed on the ground and
the energy scale is determined calorimetrically with a sub-sample of events also detected with fluorescence
telescopes. In this way, the spectrum reconstruction is almost model independent and avoids relying on
hadronic model extrapolations at these extreme energies. The measurements of the energy spectrum are
based on the combination of different techniques6–16 and span over a large range in energy, from 1015.5 eV
up to above 1020 eV. They are illustrated in Fig. 1 in the common energy range of both experiments17,18,
and agree within systematic uncertainties (±14% for Auger19 and ±21% for TA20 for the absolute energy
scale).

Figure 1: The energy spectra measured by the Pierre
Auger17 and Telescope Array18 collaborations. Only sta-
tistical uncertainties are shown.

The spectra can be superposed if an energy-
independent shift of +5.2% and −5.2% is ap-
plied to Auger and TA data respectively. A
possible tension however remains above 5×
1019 eV, where an additional 10% per decade
is needed above 1019 eV to bring the spec-
tra in agreement21. The energy spectrum can
be described by a sequence of power laws
with spectral indexes changing from γ ≈ 2.9
to ≈ 3.3 (at ≈ 1017 eV) and to ≈ 2.6 (at ≈
5 × 1018 eV). An additional steepening has
been recently measured at the Auger obser-
vatory at ≈ 1019 eV7, while a flux suppres-
sion (where γ increases to ≈ 5) has been ob-
served beyond any doubt by both collabora-
tions above ≈ 5× 1019 eV. The spectral fea-
tures and the flux scale are tracers of the pro-
cesses happening at the sources and during
propagation. They are important complemen-
tary information to the mass composition and arrival direction of cosmic rays needed to shed light on the
origin of UHECRs. The distribution of UHECR arrival directions is almost uniform, with a small, but sig-
nificant, dipole component22,23 observed by Auger, and an event clustering24 observed by TA. Neither of
them are correlated with Galactic objects or the Galactic plane, strongly suggesting an extragalactic ori-
gin of UHECR. In line with this interpretation, evidence for anisotropy at the intermediate scale correlated
with the direction of local extragalactic sources has been also reported by Auger and TA 25–28. As for the
mass composition, the Auger and TA measurements of Xmax, the main mass-sensitive observable of cos-
mic ray showers in the atmosphere, are found to be in very good agreement to within their uncertainties
when corrected for detector effects29–33. The composition measured by the two experiments34 shows that a
light composition is present around ∼ 1018 eV. The Auger measurement35,36 shows that the mass becomes
progressively heavier towards higher energies, while the TA experiment37,38 is currently collecting enough
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exposure to allow, in the near future, disentangling a heavy from a pure proton component. Both experiments
currently lack the required statistics to determine the mass composition in the flux suppression region.

The path to new discoveries

Origin of the flux suppression. The interpretation of the UHECR flux suppression above 5×1019 eV is still
open. It is unclear if the dominant cause for the steepening is related to the maximum acceleration energy
at the sources, to the energy loss processes during propagation, or to a combination of both effects39,40.
Upgrades of the Pierre Auger Observatory41 and of the Telescope Array42 endeavor to answer this question.
The Telescope Array will increase its exposure by a factor 4, while the Auger Prime upgrade will improve
the sensitivity to composition of its surface detector by adding scintillators and radio antennas to the water
Cherenkov detectors. High statistics combined with mass-composition information will be fundamental to
test the origin of the suppression.

Energy spectra for different regions of the sky. Another challenge in UHECR studies is to determine
the energy spectrum in different regions of the sky. Attempts in this direction have been made by both
Auger and TA, by dividing their respective field-of-view in different declination bands. No significant
differences were observed so far6,7, though an indication for a higher cutoff energy in the north polar
cap +24.8◦ < δ <+90.0◦ than in the equatorial band −16.0◦ < δ <+24.8◦ has been reported in TA data18.
A possible change of the energy spectrum in the different regions of the sky could be further investigated by
combining the results of the two experiments. However, this study remains limited by the 10% difference
in the absolute energy scales. A joint working group is working to understand these differences21,43–46.
A complementary joint effort aims to deploy seven independently-operated Auger stations, placed on the
typical Auger hexagonal grid, at the TA site47–50. This will help cross-calibrate the two experiments by
measuring the same air showers with the two different surface detector types.

The energy spectrum for different mass groups. The combination of flux and primary composition measure-
ments will allow mass-enhanced anisotropy studies to be performed, so as to increase the chance of source
identification, providing hence strong constraints on the production mechanisms7. Due to propagation ef-
fects, measuring a significant proton component at the highest energies would hint to the presence of a local
UHECR source. Moreover, measuring the energy spectra for different mass groups in the flux suppression
region has a direct implication on multi-messenger studies and on predictions for the cosmogenic neutrino
flux.

Beyond 1020 eV. A new hardening in the flux suppression of the energy spectrum could indicate the pres-
ence of a local source capable of accelerating particles at these energies51 and would provide new insights
on the understanding of the mechanisms responsible for the acceleration of the highest-energy CRs52. A
“recovery” of the spectrum above 1020 eV has been predicted53 in the context of Lorentz invariance (LI)
violation. Measurements in this region will possibly test the frontier of particle acceleration in the Universe,
and new physics as well. Some quantum gravity theories suggest that, at very high energies related to the
Planck scale, LI might be weakly broken54 or just modified preserving the space-time isotropy and homo-
geneity55,56. Observation of cosmic rays at such extreme energies together with their mass identification
will be of primary interest in probing the space-time structure57 and investigating different scenarios58–63.

In the future, next-generation experiments will need to gain at least an order of magnitude in exposure
to probe the UHECR spectrum beyond the flux suppression. New giant ground arrays will use a variety
of detection techniques, including radio64, fluorescence65, surface detectors66 or a combination of them,
while space-based, wide field-of-view observatories will use the fluorescence technique to detect UHECR
extensive air showers developing in the Earth’s atmosphere67–69.
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