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Abstract: IceCube has a rich program of neutrino physics, to study particle acceleration in the Universe,
but also neutrino properties through their production, propagation and interaction. Atmospheric leptons
produced by cosmic rays are the dominant background in IceCube, as well as the beam for the neutrino
physics program. Understanding the cosmic ray spectrum and composition and their hadronic interactions
are limiting systematic uncertainties for IceCube and IceCube-Gen2. Including the surface detector IceTop,
IceCube becomes a cosmic ray detector measuring shower energy and muon content both on the surface
and deep in-ice. In the next decade, new surface instrumentation will enhance IceCube’s measurements
of cosmic-ray observables, including radio and optical imaging of the shower in the atmosphere. IceCube
carries out a program of galactic cosmic ray physics across six orders of magnitude in energy, including
high-resolution measurements of the cosmic-ray energy spectrum, characterization of the mass composition
of the primary flux, sensitivity to the part-in-104 arrival direction anisotropy, and searches for PeV gamma
rays. IceCube-Gen2 will provide a factor 50 increase in exposure for high quality events with coincident
detection by surface and deep detectors, greatly reducing uncertainties in the neutrino program and providing
a window into the galactic-extragalactic transition at the ankle of the cosmic ray spectrum.
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Overview
IceCube is the preeminent detector of astrophysical and atmospheric neutrinos∗ 1. Astrophysical neu-

trinos are a key component to multi-messenger astronomy and probe cosmic accelerators2;3 and neutrino
properties† over cosmological distances. Atmospheric neutrinos and muons are irreducible backgrounds to
the identification of astrophysical neutrinos and their sources. Atmospheric neutrinos are also used to study
neutrino properties within‡ 4 and beyond the Standard Model§. IceCube-Gen2¶ 5 will include an array of
antennas to detect radio emission induced by neutrinos with E > 30 PeV‖, with a potential background due
to prompt leptons from UHE cosmic rays. These science goals rely on accurate estimates of the production
of conventional and prompt atmospheric leptons6;7.

Modeling atmospheric lepton production and comparing to observation requires accurate cosmic ray
spectra and composition8–10, whole Earth time-dependent characterizations of the atmosphere11–13, hadronic
interaction models14, and calibration of the IceCube detector. IceCube includes a surface array of ice
Cherenkov tanks, IceTop15, which produces measurements of air shower energy16 and surface (GeV)
muons17;18. Together with observations of in-ice (TeV) muons19–21, one may resolve composition22 and
constrain hadronic interaction models∗∗ 23–25, subject to uncertainties of in-ice calibration26 and snow accu-
mulation on IceTop tanks27. Enhancments to the current surface instrumentation (500 m2 of elevated scin-
tillator panels28, 200 radio channels†† 29, and optical air Cherenkov telescopes30) should improve shower
reconstruction, reduce uncertainty in atmospheric lepton production, and improve the neutrino science pro-
gram.

IceCube also maintains a program to study particle production and propagation in the galaxy. This will
be fully realized as surface instrumentation is extended within the larger IceCube-Gen2 footprint, increasing
the rate of events with coincident surface and in-ice detection by a factor 50. With remote measurements of
shower intensity and depth development, improved in-ice calibration, more stable surface instrumentation,
and muon content measured at both GeV and TeV energies, IceCube will greatly improve reconstruction
of single events and extend spectral and composition studies below the knee31 and above an EeV‡‡. By
studying cosmic ray arrival anisotropy§§ 32;33 and searching for PeV γ-rays34, IceCube-Gen2 will enhance
our knowledge of galactic cosmic rays over six decades of energy – from TeV energies, across the knee, to
the ankle.

Cross-references to LoIs of Snowmass2021:
∗D. Grant, F. Halzen et al., The IceCube Neutrino Observatory
†M. Santander, I. Taboada et al., Opportunities for multi-messenger observations with neutrinos and
tests of fundamental physics over the next decade
‡S. R. Klein et al., Neutrino cross-sections and interaction physics,
T. Stuttard, D. J. Koskinen et al., Neutrino oscillations with IceCube-DeepCore and theIceCube Upgrade
§A. Pollmann, I. Taboada et al., Searches for exotic particles with the IceCube NeutrinoObservatory
¶A. Karle, M. Kowalski et al., IceCube-Gen2: The Window to the Extreme Universe,

A. Karle, M. Kowalski et al., IceCube-Gen2: the next generation wide band neutrino observatory
‖S. Wissel et al., The Radio Neutrino Observatory in Greenland (RNO-G)
∗∗D. Soldin et al., Studies of the Muon Excess in Cosmic Ray Air Showers
††F. G. Schröder et al., Radio Detection of Cosmic Rays
‡‡A. Haungs et al., Highest Energy Galactic Cosmic Rays
§§P. Desiati et al., Determination of cosmic ray properties in the local interstellar medium with all-sky anisotropy observations
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