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Abstract: Long-baseline atomic quantum sensing is an exciting new field that offers new han-
dles and opportunities to expand the exploration of the physics of the universe. Long-baseline
atom interferometers can allow direct searches for ultralight wave-like dark matter at sensitivi-
ties orders of magnitude beyond current limits. Kilometer-scale baselines open the prospect of
exploration of the gravitational wave spectrum in a new frequency range, between the peak sen-
sitivities of LIGO and LISA, that is particularly sensitive to cosmological signals from the early
universe and to a wide variety of astrophysical sources, complementing the rich program of fu-
ture 3G laser interferometers, particularly for multi-messenger astronomy. The development and
science exploitation of long-baseline atomic experiments will enable an ambitious long-term re-
search program at the intersection of the of the energy, cosmic, and quantum information frontiers.



Long-baseline atom interferometry is a rapidly growing field with a variety of exciting fun-
damental physics applications. Science opportunities include gravitational wave detection [1–7],
searches for ultralight wave-like dark matter candidates [8, 9] and for dark energy [10], tests of
gravity and searches for new fundamental interactions (‘fifth forces’) [11–25], precise tests of the
Standard Model [26, 27], and tests of quantum mechanics [28–37]. Such experiments take advan-
tage of the ongoing evolution of the precision and accuracy of atomic sensors. Optical lattice
clocks now regularly attain 18 digits of frequency resolution [38, 39] and beyond [40, 41], while
atom interferometers continue to improve both in inertial sensing applications [42] and in precision
metrology, including measurements of Newton’s gravitational constant [11,43,44], the fine structure
constant [26, 27], and the equivalence principle [14–25]. Several community reports [45–47] have
recognized that long-baseline quantum sensor networks have a broad scientific potential, including
searches for new fundamental forces, ultralight wave-like dark matter, and gravitational waves in
an unexplored frequency range.

In the past several years, there has been widespread and growing international interest in pur-
suing long-baseline atomic sensors for gravitational wave detection and ultralight wave-like dark
matter searches. An impressive number of efforts have begun around the world, including both
terrestrial experiments and space-based proposals. In the US, MAGIS-100 [48] is an intermediate-
size detector with a 100-meter baseline currently under construction at Fermilab. In Europe,
significant progress has already been made on the construction of MIGA (Matter wave-laser based
Interferometer Gravitation Antenna) [2], a 200 m baseline underground gravitational wave detector
demonstrator located in France. To follow up on this, a new proposal has called for the construc-
tion of ELGAR (European Laboratory for Gravitation and Atom-interferometric Research) [3], an
underground detector with horizontal 32 km arm length aiming to detect gravitational waves in
the mid-band (infrasound) frequency range. In China, work has begun to build ZAIGA (Zhaoshan
long-baseline Atom Interferometer Gravitation Antenna) [5], a set of multiple 300 m vertical shafts
separated by km-scale laser links that will use atomic clocks and atom interferometry to explore
a wide range of science including gravitational wave detection. In the UK, a broad collaboration
of eight institutes has recently advanced a multi-stage program called AION (Atom Interferometer
Observatory and Network) [7], which aims to progressively construct atom interferometers at the 10-
and then 100-meter scale, in order to develop technologies for a full-scale kilometer baseline instru-
ment for both gravitational wave detection and dark matter searches. To access lower frequencies,
a variety of space-based detectors have also been proposed, based both on atomic clocks [49, 50]
and atom interferometers [6, 51–53], and in fact these technologies are closely related [54].

The ambitious scope of these experiments and proposals is evidence of the enthusiasm in the
community for the long-term science prospects offered by long-baseline atomic sensing. In addition,
these many detectors have the potential to complement each other. The diversity of approaches
taken by the various experiments is a clear strength, offering opportunities for different groups to
develop alternate atomic sensing technologies in parallel. More directly, operating multiple detec-
tors in different parts of the world as part of a network offers valuable scientific advantages [7].
In the spirit of the LIGO/Virgo/KAGRA collaboration, correlating data collected simultaneously
by several atom interferometer gravitational wave detectors operating in the mid-band frequency
range would be a powerful way to improve background rejection and increase overall sensitivity.
Gravitational Waves: In order to fully realize the potential of gravitational wave observations,
we will need to cover as many different frequency bands as possible. Atomic sensors appear promis-
ing for observing gravitational waves in the mid-band, roughly 30 mHz to 10 Hz, between LIGO and
other ground-based laser interferometers (10 Hz - 1 kHz) and LISA (1 mHz - 50 mHz), as shown in
Figure 1a. Achieving the required level of sensitivity will be challenging, but the potential payoff
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Figure 1: (a) Projected gravitational wave sensitivity for a future space-based sensor (MAGIS-space) and a kilometer-
scale terrestrial detector (MAGIS-km) both based on the MAGIS concept [51, 52]. Matter wave interferometry
supports a variety of detection protocols, including broadband (black, solid) and a narrow-band sweeping search
mode (brown resonant mode envelope, with two dashed examples [55]). Several known astrophysics binary systems
(red: black holes, blue: neutron stars, green: white dwarfs) are shown for reference. (b) Projected sensitivity of
MAGIS-100 and MAGIS-km to an ultralight scalar wave-like dark matter model with coupling strength dme to the
electron mass, versus the mass of the scalar particle (existing bounds shown in gray) [8].

is huge. There are a number of compelling reasons to explore the mid-band. For example, the
mid-band may be optimal for observing the highest energy scales in the very early universe. This
frequency range is above the white dwarf “confusion noise” but can still be low enough frequency
to see certain cosmological sources [55]. Furthermore, phase transitions in the early universe at
scales above the weak scale [56] and networks of cosmic strings [57] may produce detectable gravi-
tational wave signals in this band. The mid-band will also be sensitive to new astrophysics sources
of gravitational waves such as heavier (hundreds of solar masses) black holes mergers and white
dwarf binary mergers not observable at higher frequencies. Furthermore, the mid-band appears
to be a promising band for measuring the spin of merging black holes. In addition, and very im-
portantly, many black hole or neutron star binaries that are observed in the mid-band can later
be observed by LIGO once they evolve to higher frequencies. Such joint observation would be
a powerful new source of information. This would allow an atomic detector in the mid-band to
give a prediction of the time and location of a merger event. Since the sources generally live a
long time in this mid-frequency band, they can be localized on the sky even by a single-baseline
detector, and in fact the mid-band is ideal for localization and prediction of such merger events [58].
Ultralight Dark Matter: Wave-like dark matter can lead to time-dependent signals in high
precision quantum sensor networks, enabling a unique probe of its existence. In particular, these
time dependent signals can be caused by ultra-light dark matter candidates. Well motivated theories
indicate that the mass range from 10−22 eV to 10−3 eV is particularly interesting, and long-baseline
atomic sensors offer a promising approach in the lower part of this range (e.g, Fig. 1b). Potential
dark matter candidates within this range include the QCD axion, axion-like-particles, and the
relaxion. Dark matter in this mass range has a large number density and can be described as a
classical field that oscillates at a frequency determined by the mass of the dark matter particle.
This results in time dependent effects that can be searched for using a quantum network. These
effects arise because as the classical dark matter field oscillates, the properties of the sensor (such as
the quantum energy level and spin) also change, leading to time dependent signals. Figure 1b shows
sensitivity to an example dark matter model for an atomic sensor using the MAGIS configuration
(see also the LoI on the MAGIS-100 demonstration experiment [59]).
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foundations of the universe with space tests of the equivalence principle. arXiv preprint
arXiv:1908.11785, 2019.
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