
Snowmass2021 - Letter of Interest

Fundamental Physics with Pulsar Timing Arrays

Thematic Areas: (check all that apply �/�)

� (CF1) Dark Matter: Particle Like
� (CF2) Dark Matter: Wavelike
� (CF3) Dark Matter: Cosmic Probes
� (CF4) Dark Energy and Cosmic Acceleration: The Modern Universe
� (CF5) Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before
� (CF6) Dark Energy and Cosmic Acceleration: Complementarity of Probes and New Facilities
� (CF7) Cosmic Probes of Fundamental Physics
� (Other) [Please specify frontier/topical group]

Contact Information: Xavier Siemens (Oregon State University) [xavier.siemens@oregonstate.edu]

Authors: Xavier Siemens (Oregon State University), Jeffrey Hazboun (University of Washington – Both-
ell), Paul T. Baker (Widener University), Sarah Burke-Spolaor (West Virginia University),Timothy Dolch
(Hillsdale College), Eric Howard (CSIRO), Dustin R. Madison (West Virginia University), Chiara Mingarelli
(University of Conneticut, Flatiron Institute), Joseph Simon (University of Colorado Boulder), Stephen R. Tay-
lor (Vanderbilt University), Tristan Smith (Swarthmore College), for the NANOGrav Collaboration.

1



Pulsar timing arrays (PTAs) will enable the detection an characterization of nanohertz gravitational waves
(GWs) from a population of supermassive binary black holes (SMBBHs) in the next few years. Additionally,
PTAs provide a rare opportunity to probe fundamental physics. Potential sources of GWs in the nanohertz
band include cosmic strings and cosmic superstrings, inflation, and phase transitions in the early universe.

GW observations will also make possible tests of gravitational theories that, by modifying Einstein’s theory
of general relativity, attempt to explain the origin of cosmic acceleration and reconcile quantum mechanics
and gravity, two critical challenges facing fundamental physics today. Finally, PTAs also provide a new
means to probe certain dark matter models. Clearly, a positive detection of any of these observational sig-
natures would have profound consequences for cosmology and fundamental physics. In this letter of intent
we briefly discuss these potential signatures.

Cosmic strings and cosmic superstrings: Cosmic strings are topological defects that can form during
phase transitions in the early Universe [1, 2], and cosmic superstrings are the fundamental strings of string
theory stretched to cosmological scales due to the expansion of the Universe [3–8]. Once formed, cosmic
string and superstring networks both evolve in a similar way [9], producing a GW stochastic background
along with bursts of GWs that stand out above the background [10–17].

The detection of a stochastic background from cosmic (super)strings, or GWs from individual cosmic (su-
per)string loops, would be transformative for fundamental physics. PTAs are currently the most sensitive
experiment for the detection of cosmic (super)strings [18], and will remain so for at least the next decade
and a half; PTA sensitivity to cosmic (super)strings will not be superseded until the LISA mission which is
scheduled for launch in 2034 [17].

Primordial GWs from inflation: The evolution of the very early Universe is thought to include a pe-
riod of exponential expansion that accounts for the observed homogeneity, isotropy, and flatness of the
Universe [19–25]. Additionally, by expanding quantum fluctuations present in the pre-inflationary epoch,
inflation seeds the density fluctuations that evolve into the large scale structures we see in the Universe to-
day [26–30], and produces a stochastic background of GWs [31–33].

The inflationary GW background is broad-band, like the one produced by cosmic strings, and potentially
detectable by multiple experiments. For standard inflation models the GW background in the PTA band is
likely to be fainter than that of SMBBHs; this, however, depends on the character of the SMBBH spectrum
at the lowest frequencies where environmental effects like accretion from a circumbinary disk or stellar scat-
tering can reduce SMBBH GW emission [34]. Additionally, some inflationary models have a spectrum that
rises with frequency and could be tested with PTAs, and higher frequency GW experiments such as LISA
and LIGO. Indeed, PTA, GW interferometer, and CMB data, combined across 29 decades in frequency, have
already begun to place stringent limits on such models [35].

Phase transitions in the early universe: The early Universe may have experienced multiple phase transi-
tions as it expanded and cooled. Phase transitions can produce GWs with wavelengths of order the Hubble
length at the time of the phase transition. The nanohertz frequency band accessible to PTAs maps onto
the era in the early universe when the quantum chromodynamics (QCD) phase transition took place, about
10−5 s after the Big Bang. The horizon at that time was on the order of 10 km, and any GWs generated at that
length scale at that time would today be stretched to about 1 pc (or 3 light-years), which corresponds to GW
frequencies of about 10 nHz, and lie within the PTA sensitivity band. The possibility that interesting QCD
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physics can result in a GW signal detectable by PTAs was first pointed out by Witten in the 1980s [36]. PTAs
provide a window onto GW-producing physical processes occurring in the universe at the time of the QCD
phase transition, and, for example, could detect GWs from a first order phase transition at that time [37].

Gravitational-wave tests of general relativity: Attempts to explain the origins of cosmic acceleration and
to reconcile gravity and quantum mechanics, two outstanding fundamental physics problems, often involve
modifications to Einstein’s theory of general relativity. Testing general relativity as a theory of gravity is
therefore a crucial goal for PTAs [38]. Here we focus on tests of general relativity made possible by PTA
detections of gravitational waves; strong-field tests of GR based on binary neutron star orbits are also pos-
sible with PTA data and are discussed in a separate LOI. General relativity predicts the existence of GWs
which travel at the speed of light, are transverse, and have two polarizations. Other metric theories of grav-
ity generically predict the existence of GWs with different properties: up to six polarizations and modified
dispersion relations [39, 40].

PTAs offer significant advantages over interferometers like LIGO for detecting new polarizations or con-
straining the polarization content of GWs. Each line of sight to a pulsar can be used to construct an inde-
pendent projection of the various GW polarizations, and since PTAs typically observe tens of pulsars, linear
combinations of the data can be formed to measure or constrain each of the six polarizations many times
over [38]. Additionally, PTAs have an enhanced response to the longitudinal polarization [41]. Finding ex-
perimental evidence in favor of additional polarizations and/or non-standard dispersion properties for GWs
would immediately rule out general relativity.

Dark matter: Dark matter is an essential component of the universe, accounting for about a quarter of its
energy density. It explains a wide range of cosmological phenomena, from galaxy rotation curves to the
detailed characteristics of the CMB and large-scale structure formation. Despite the enormous success of
dark matter its nature remains an open question in fundamental physics.

Certain classes of dark matter models produce observable signatures at nanohertz frequencies. Scalar fields
with masses around 10−23 eV, for example, can produce periodic oscillations in the gravitational poten-
tial with frequencies in the nanohertz range, well within the detectable range of PTAs in the coming
decade [42, 43]. Finally, standard cold dark matter (CDM) models naturally produce small scale clumps
which may also be detectable by PTAs. A CDM clump moving near the Earth or a pulsar produces an accel-
eration that could be measurable in PTA data, providing an opportunity to test the CDM paradigm [44–50].
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