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Abstract  Effective long-term collaboration between national laboratories, academia and industry will 

lead to important benefits for the entire HEP community. Labs and universities will have access to better 

software with lower lifecycle costs. Companies will be strengthened by knowledge transfer from labs and 

universities. Computational scientists will be able to concentrate on core competencies, without spending 

time on UI design, ease of use, cloud computing, etc. Society will reap the benefits of better science, more 

innovation, and stronger businesses. State-of-the-art simulation codes will become readily available to 

students. Training time and associated costs will be reduced, as new team members will become productive 

more quickly. This will contribute to equity, diversity and inclusion (EDI), as barriers to entry are removed 

for scientists in developing countries and for those at US institutions with less federal funding and no direct 

access to code developers. 

 

 

 

 

 

 

 

 



Statement of the problem   The development and implementation of algorithms is a core competency of 

universities and research laboratories. When instantiated, the resulting codes often make use of a command 

line workflows which are error prone and difficult to reproduce.  These workflows require excessive time 

and training to learn, involve multiple input and configuration files, execute on a high-performance server 

or cluster, necessitate post-processing with specialized software and additional visualization steps.  

Professional software developers can make important contributions; however, they are expensive to 

hire and difficult to retain. Software sustainability and ease-of-use are very difficult to do well, but not 

especially interesting from the point of view of a computational physicist or computer scientist who needs 

to publish their work. Some excellent software developers and data scientists will be more easily hired, 

incentivized and retained in a small business environment, so close collaboration with industry can help to 

address career pipeline challenges with which the community is struggling. 

Effective partnerships between industry and national laboratories, as well as between industry and 

universities, are necessary to maximize the productivity of available software development resources. 

One example – particle accelerator codes   There are many world class particle accelerator design codes 

that are freely available to the community – a small subset includes MAD-X [1, 2], elegant [3, 4], Synergia 

[5, 6], Zgoubi [27], OPAL [8], Warp [9-12] and JSPEC [13, 14]. These codes offer wide ranging 

capabilities, with significant overlap, but each with uniquely important features. Each code varies in the 

difficulty required to compile and install, as well as the quality and quantity of user documentation. 

Typically, users must learn a command-line workflow, which may involve script development and/or the 

understanding and editing of multiple input and configuration files. Typically, the codes are run in parallel 

on a Linux cluster or supercomputing center. The codes generate a variety of output and simulation results, 

sometimes in multiple files, using plain text and binary formats. Visualization and post-processing generally 

requires specialized software. The resulting workflows can be idiosyncratic, opaque and brittle. Some code 

development teams provide user support, but generally the important details of these complicated 

workflows are not available to scientists who don’t have a good connection to expert users at major 

institutions. 

Ease-of-use is important -- a fact that is widely recognized by the development teams and by the 

community. However, it is not practical to develop a GUI for each separate code. The importance of code 

benchmarking and inter-comparison is also widely recognized, but there is not much incentive or reward 

for such efforts, so it is necessary to better facilitate the use of many codes together. A closely related 

problem is the difficulty of using multiple codes in sequence for beginning-to-end simulation of complex 

facilities. 

Reproducibility and long-term sustainability are two important and related difficulties, which are not 

always adequately addressed. Simulations play an essential role in high-energy particle accelerator facilities 

over a period of decades, from pre-conceptual design, to final design, to commissioning and onward to a 

sequence of upgrades. It is essential that project scientists are able to reproduce past simulation results and 

to understand whether differences arise from improved modeling capabilities, changes in the design, or 

other factors. These concerns apply to many application codes throughout high energy physics. 

Some requirements for success   In order to facilitate the necessary collaborations and to provide the 

entire community with confidence that the software will be widely available and adequately supported over 

decades, an open source license is required for the industry software and can be very helpful for the entire 

software ecosystem [28]. This imposes an open source business model on the corresponding businesses, at 

least with regard to this specific activity. The software design objectives must include seamless integration 

with legacy codes, low barrier to entry for new users, easily moving between GUI and command-line 

modes, cataloging of provenance to aid reproducibility, and simplified collaboration through multimodal 

sharing. 

First example: Sirepo  Sirepo is an open source framework [15-19] for bringing scientific, engineering 

or educational software to the cloud, with a GUI that works in any modern browser on any computing 

device with sufficient screen size, including tablets. The Sirepo client is built on HTML5 technologies, 

including the JavaScript libraries Bootstrap [20] and Angular [21]. The D3 library [22, 23] is used for 2D 

graphics, while VTK [24] is used for 3D. The supported codes and dependencies are containerized via 

Docker [25], an open platform for distributed applications. RadiaSoft has developed open source software 



and expertise for building, deploying and executing scientific codes in Docker containers, and the 

corresponding images are publicly available [26]. These containers are compatible with the Shifter 

containerization technology at the NERSC supercomputing center, which enables a Sirepo server to 

automatically launch jobs at NERSC. 

A free Sirepo scientific gateway is available to the particle accelerator community [17], providing a broad 

selection of supported codes. The accelerator tracking codes include MAD-X, elegant, Synergia, OPAL 

and Zgoubi. Presently under development, the MAD-X sequence file format will be used as a common 

format to enable rapid code benchmarking and sequential use of multiple codes. The loosely coupled cloud-

based architecture of Sirepo enables coupling with other sophisticated software and systems. This is another 

reason for the enterprise approach.  At NSLS-II for example, the DAMA group is integrating Sirepo/SRW 

with their BlueSky [19, 27] software for experimental control and data management. 

Sirepo has been designed to transcend the limitations that discourage many scientists from working with 

GUI-driven applications. Sirepo can import the necessary input, data or configuration files for the codes 

that it supports, so experts can quickly transfer their simulation results to a GUI user. Likewise, the GUI 

can export a zip file with everything needed to run the identical simulation from the command line. 

Second example: Computational Model Builder  CMB is an open source platform with integrated 

software tools designed to integrate all processes involved in the life cycle of numerical simulation [29]. 

CMB is developed with a modular, flexible architecture that has been customized for a number of different 

scientific fields including hydrology, computational fluid dynamics, and multiphysics casting simulation. 

In high energy physics, CMB provides a graphical user interface for the ACE3P accelerator modeling codes. 

In every CMB application, the primary goal is to simplify end-user effort and reduce the manual overhead 

often taken up by workflow and data management activities associated with simulation based design and 

analysis. 

To prepare simulation inputs, CMB provides form-style fields for entering data combined with selection 

and highlighting of modeling geometry in 3D views. The input fields are automatically generated from 

XML template files that describe and organize the keywords making up the simulation code input 

specification. The UI includes syntax checking to reduce the likelihood of entering invalid data. At the 

backend, Python scripts are used to write the simulation input files based on the user-entered data. CMB 

allows new applications to be developed with less effort than custom UI software. 

For simulation job execution, CMB relies on the Girder data management platform [30] as a middle-tier 

server connected between the desktop user and remote HPC or cloud-based systems. When users submit 

jobs from the CMB desktop, execution status is tracked continuously by Girder and reported back to the 

desktop. For ACE3P simulation, a Girder server has been deployed on the NERSC Spin platform for 

submitting and tracking simulation jobs. This system is in the process of being updated with additional 

resource-location services so that simulation results can be more easily traced back to their source data. 

Because the CMB platform is built on ParaView [31], it provides the full set of ParaView postprocessing 

and visualization features. This includes remote visualization of simulation results and in situ visualization 

of interim results during execution. CMB and ACE3P are currently being updated to support these features 

so they can be seamlessly accessed from the CMB user interface, again reducing the effort required by 

scientific researchers. As with all aspects of the CMB design, the overall goal is to adapt to the needs of the 

simulation user, instead of requiring the user to adapt to the available computing environment and software 

tools. For applications that integrate geometry modeling, CMB also includes a geometry module for 

operations such as model creation, model modification, and discretization using external meshing 

technologies. 

Conclusion  Effective long-term collaboration between national laboratories, academia and industry will 

lead to important benefits for the entire HEP community. 
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