
Snowmass2021 Letter of Interest:

“Collaboration between industry and the HEP community”

D.L. Bruhwiler,1,† R. Nagler,1 P. Moeller,1 R. O’Bara,8 D.T. Abell,1 S. Baturin,5 E. Carlin,1

S. Coleman,1 N.M. Cook,1 J. Edelen,1 C. Federer,1 A.F. Habib,2 C.C. Hall,1 T. Heinemann,2

B. Hidding,2 A. Huebl,4 M.V. Keilman,1 R. Lehe,4 E. Carlin,1 P. Messamer,1 B. Nash,1 C.-K.

Ng,9 C.S. Park,7 P. Piot,5,6 I. Pogorelov,1 E. Poore,1 A. Sauers,3 P. Scherkl,2 J. Tourtellott,8 J.-L.

Vay4 and S.D. Webb1

1RadiaSoft LLC, Boulder, Colorado 80301, USA
2University of Strathclyde, Glasgow G11XQ, UK

3Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
4Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

5Northern Illinois University, DeKalb, Illinois 60115, USA
6Argonne National Laboratory, Lemont, Illinois 60439, USA

7Korea University, Sejong Campus, Sejong, Republic of Korea
8Kitware, Inc., Clifton Park, New York 12065, USA

9SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

August 31, 2020

† bruhwiler@radiasoft.net

Abstract Effective long-term collaboration between national laboratories, academia and industry will

lead to important benefits for the entire HEP community. Labs and universities will have access to better

software with lower lifecycle costs. Companies will be strengthened by knowledge transfer from labs and

universities. Computational scientists will be able to concentrate on core competencies, without spending

time on UI design, ease of use, cloud computing, etc. Society will reap the benefits of better science, more

innovation, and stronger businesses. State-of-the-art simulation codes will become readily available to

students. Training time and associated costs will be reduced, as new team members will become productive

more quickly. This will contribute to equity, diversity and inclusion (EDI), as barriers to entry are removed

for scientists in developing countries and for those at US institutions with less federal funding and no direct

access to code developers.

Statement of the problem The development and implementation of algorithms is a core competency of

universities and research laboratories. When instantiated, the resulting codes often make use of a command

line workflows which are error prone and difficult to reproduce. These workflows require excessive time

and training to learn, involve multiple input and configuration files, execute on a high-performance server

or cluster, necessitate post-processing with specialized software and additional visualization steps.

Professional software developers can make important contributions; however, they are expensive to

hire and difficult to retain. Software sustainability and ease-of-use are very difficult to do well, but not

especially interesting from the point of view of a computational physicist or computer scientist who needs

to publish their work. Some excellent software developers and data scientists will be more easily hired,

incentivized and retained in a small business environment, so close collaboration with industry can help to

address career pipeline challenges with which the community is struggling.

Effective partnerships between industry and national laboratories, as well as between industry and

universities, are necessary to maximize the productivity of available software development resources.

One example – particle accelerator codes There are many world class particle accelerator design codes

that are freely available to the community – a small subset includes MAD-X [1, 2], elegant [3, 4], Synergia

[5, 6], Zgoubi [27], OPAL [8], Warp [9-12] and JSPEC [13, 14]. These codes offer wide ranging

capabilities, with significant overlap, but each with uniquely important features. Each code varies in the

difficulty required to compile and install, as well as the quality and quantity of user documentation.

Typically, users must learn a command-line workflow, which may involve script development and/or the

understanding and editing of multiple input and configuration files. Typically, the codes are run in parallel

on a Linux cluster or supercomputing center. The codes generate a variety of output and simulation results,

sometimes in multiple files, using plain text and binary formats. Visualization and post-processing generally

requires specialized software. The resulting workflows can be idiosyncratic, opaque and brittle. Some code

development teams provide user support, but generally the important details of these complicated

workflows are not available to scientists who don’t have a good connection to expert users at major

institutions.

Ease-of-use is important -- a fact that is widely recognized by the development teams and by the

community. However, it is not practical to develop a GUI for each separate code. The importance of code

benchmarking and inter-comparison is also widely recognized, but there is not much incentive or reward

for such efforts, so it is necessary to better facilitate the use of many codes together. A closely related

problem is the difficulty of using multiple codes in sequence for beginning-to-end simulation of complex

facilities.

Reproducibility and long-term sustainability are two important and related difficulties, which are not

always adequately addressed. Simulations play an essential role in high-energy particle accelerator facilities

over a period of decades, from pre-conceptual design, to final design, to commissioning and onward to a

sequence of upgrades. It is essential that project scientists are able to reproduce past simulation results and

to understand whether differences arise from improved modeling capabilities, changes in the design, or

other factors. These concerns apply to many application codes throughout high energy physics.

Some requirements for success In order to facilitate the necessary collaborations and to provide the

entire community with confidence that the software will be widely available and adequately supported over

decades, an open source license is required for the industry software and can be very helpful for the entire

software ecosystem [28]. This imposes an open source business model on the corresponding businesses, at

least with regard to this specific activity. The software design objectives must include seamless integration

with legacy codes, low barrier to entry for new users, easily moving between GUI and command-line

modes, cataloging of provenance to aid reproducibility, and simplified collaboration through multimodal

sharing.

First example: Sirepo Sirepo is an open source framework [15-19] for bringing scientific, engineering

or educational software to the cloud, with a GUI that works in any modern browser on any computing

device with sufficient screen size, including tablets. The Sirepo client is built on HTML5 technologies,

including the JavaScript libraries Bootstrap [20] and Angular [21]. The D3 library [22, 23] is used for 2D

graphics, while VTK [24] is used for 3D. The supported codes and dependencies are containerized via

Docker [25], an open platform for distributed applications. RadiaSoft has developed open source software

and expertise for building, deploying and executing scientific codes in Docker containers, and the

corresponding images are publicly available [26]. These containers are compatible with the Shifter

containerization technology at the NERSC supercomputing center, which enables a Sirepo server to

automatically launch jobs at NERSC.

A free Sirepo scientific gateway is available to the particle accelerator community [17], providing a broad

selection of supported codes. The accelerator tracking codes include MAD-X, elegant, Synergia, OPAL

and Zgoubi. Presently under development, the MAD-X sequence file format will be used as a common

format to enable rapid code benchmarking and sequential use of multiple codes. The loosely coupled cloud-

based architecture of Sirepo enables coupling with other sophisticated software and systems. This is another

reason for the enterprise approach. At NSLS-II for example, the DAMA group is integrating Sirepo/SRW

with their BlueSky [19, 27] software for experimental control and data management.

Sirepo has been designed to transcend the limitations that discourage many scientists from working with

GUI-driven applications. Sirepo can import the necessary input, data or configuration files for the codes

that it supports, so experts can quickly transfer their simulation results to a GUI user. Likewise, the GUI

can export a zip file with everything needed to run the identical simulation from the command line.

Second example: Computational Model Builder CMB is an open source platform with integrated

software tools designed to integrate all processes involved in the life cycle of numerical simulation [29].

CMB is developed with a modular, flexible architecture that has been customized for a number of different

scientific fields including hydrology, computational fluid dynamics, and multiphysics casting simulation.

In high energy physics, CMB provides a graphical user interface for the ACE3P accelerator modeling codes.

In every CMB application, the primary goal is to simplify end-user effort and reduce the manual overhead

often taken up by workflow and data management activities associated with simulation based design and

analysis.

To prepare simulation inputs, CMB provides form-style fields for entering data combined with selection

and highlighting of modeling geometry in 3D views. The input fields are automatically generated from

XML template files that describe and organize the keywords making up the simulation code input

specification. The UI includes syntax checking to reduce the likelihood of entering invalid data. At the

backend, Python scripts are used to write the simulation input files based on the user-entered data. CMB

allows new applications to be developed with less effort than custom UI software.

For simulation job execution, CMB relies on the Girder data management platform [30] as a middle-tier

server connected between the desktop user and remote HPC or cloud-based systems. When users submit

jobs from the CMB desktop, execution status is tracked continuously by Girder and reported back to the

desktop. For ACE3P simulation, a Girder server has been deployed on the NERSC Spin platform for

submitting and tracking simulation jobs. This system is in the process of being updated with additional

resource-location services so that simulation results can be more easily traced back to their source data.

Because the CMB platform is built on ParaView [31], it provides the full set of ParaView postprocessing

and visualization features. This includes remote visualization of simulation results and in situ visualization

of interim results during execution. CMB and ACE3P are currently being updated to support these features

so they can be seamlessly accessed from the CMB user interface, again reducing the effort required by

scientific researchers. As with all aspects of the CMB design, the overall goal is to adapt to the needs of the

simulation user, instead of requiring the user to adapt to the available computing environment and software

tools. For applications that integrate geometry modeling, CMB also includes a geometry module for

operations such as model creation, model modification, and discretization using external meshing

technologies.

Conclusion Effective long-term collaboration between national laboratories, academia and industry will

lead to important benefits for the entire HEP community.

References

[1] L. Deniau, H. Grote, G. Roy, F. Schmidt, “The MAD-X Program (Methodical Accelerator Design) Version

5.06.00 User’s Reference Manual,” http://mad.web.cern.ch/mad/releases/last-rel/madxuguide.pdf

[2] MAD-X homepage, http://madx.web.cern.ch/madx/

[3] M. Borland, “elegant: A flexible SDDS-compliant code for accelerator simulation”, in Tech. report APS LS-287,

2000.

[4] Y. Wang and M. Borland. “Pelegant: A Parallel Accelerator Simulation Code for Electron Generation and

Tracking”. in AIP Conf. Proc., vol. 877, 2006, p. 241.

[5] J. Amundson, P. Spentzouris, J. Qiang and R. Ryne, “Synergia: A 3D Accelerator Modelling Tool with 3D Space

Charge”, J. Comput. Phys., vol. 211, 2005, pp. 229-248.

[6] The Synergia homepage, https://web.fnal.gov/sites/synergia

[7] F. Méot, "Zgoubi users guide”, FERMILAB-TM-2010, 1997.

[8] The Object Oriented Parallel Accelerator Library (OPAL), https://gitlab.psi.ch/OPAL/src/-/wikis/home

[9] D. P. Grote et al., “The WARP Code: Modeling High Intensity Ion Beams”, in AIP Conf. Proc. 749, 55 (2005).

[10] J.-L. Vay et al., “Novel Methods in the Particle-In-Cell Accelerator Code Framework Warp”, in Comput. Sci.

Disc., vol. 5, p. 014019, 2012.

[11] A. Friedman et al., “Computational Methods in the Warp Code Framework for Kinetic Simulations of Particle

Beams and Plasmas”, in IEEE Transactions on Plasma Science, vol. 42, pp. 1321–1334, May 2014.

[12] The open source Warp development repository, https://bitbucket.org/berkeleylab/warp

[13] H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, and L. Luo, “Development of the Electron Cooling Simulation

Program for JLEIC”, in Proc. 7th Int. Particle Accelerator Conf. (IPAC'16), Busan, Korea, May 2016, pp. 2451-

2453. doi:10.18429/JACoW-IPAC2016-WEPMW014

[14] JLab Simulation Package for Electron Cooling (JSPEC) on GitHub,

https://github.com/zhanghe9704/electroncooling

[15] D.L. Bruhwiler, D.T Abell, N.M. Cook, C.C. Hall, M.V. Keilman, P. Moeller, R. Nagler and B. Nash,

“Knowledge Exchange Within the Particle Accelerator Community via Cloud Computing,” in Proc. Int. Part.

Accel. Conf., THPMP046 (2019); https://accelconf.web.cern.ch/ipac2019/papers/thpmp046.pdf

[16] R. Nagler, P. Moeller, M.V. Keilman and E. Carlin; the Sirepo development repository on GitHub,
https://github.com/radiasoft/sirepo

[17] Sirepo scientific gateway, https://www.sirepo.com/

[18] M.S. Rakitin, P. Moeller, R. Nagler, B. Nash, D.L. Bruhwiler, D. Smalyuk, M. Zhernenkov and O. Chubar,

“Sirepo: an open-source cloud-based software interface for X-ray source and optics simulations,” Journal of

Synchrotron Radiation 25, 1877 (2018); https://doi.org/10.1107/S1600577518010986

[19] M. Rakitin, A. Giles, K. Swartz, J. Lynch, P. Moeller, R. Nagler et al., “Introduction of the Sirepo-Bluesky

interface and its application to the optimization problems,” Advances in Computational Methods for X-Ray

Optics, ed. O. Chubar and K. Sawhney, Proc. of SPIE 11493, 1149311 (2020);
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11493/1149311/Introduction-of-the-Sirepo-
Bluesky-interface-and-its-application-to/10.1117/12.2569000.short?SSO=1

[20] The Bootstrap homepage, http://getbootstrap.com

[21] The AngularJS homepage, https://angularjs.org

[22] The D3 homepage, http://d3js.org

[23] M. Bostock, V. Ogievetsky and J. Heer. “D3 Data-Driven Documents”, in IEEE Transactions on Visualization

and Computer Graphics 17, p. 2301 (2011).

[24] The vtk.js homepage, https://kitware.github.io/vtk-js

[25] The Docker homepage, https://www.docker.com

[26] RadiaSoft scientific containers are publicly available on DockerHub, https://hub.docker.com/u/radiasoft

[27] GitHub repository for Bluesky/Sirepo integration, https://github.com/NSLS-II/sirepo-bluesky

[28] A. Huebl, et al., “Aspiration for Open Science in Accelerator & Beam Physics Modeling”, Letter of Interest to

Snowmass21.

[29] Computational Model Builder, https://www.computationalmodelbuilder.org/

[30] Girder, a data management platform, https://girder.readthedocs.io/

[31] ParaView: Large Data Visualization Made Easier, https://www.paraview.org/overview

https://accelconf.web.cern.ch/ipac2019/papers/thpmp046.pdf
https://girder.readthedocs.io/
https://www.paraview.org/overview

