
Evolution of HEP Processing Frameworks

Christopher D Jones and Kyle Knoepfe​l
Fermi National Accelerator Laboratory

Paolo Calafiura and Charles Leggett

Lawrence Berkeley National Laboratory

Introduction

HEP data-processing software must support the disparate physics needs of many experiments.
For both collider and neutrino environments, HEP experiments typically use data-processing
frameworks to manage the computational complexities of the following processing categories:

● Triggering​, which uses digitized responses directly from the detector to quickly decide if
the information is worth storing for later processing,

● Calibration​, which is performed to provide proper understanding of the detector
responses,

● Reconstruction​ of the detector responses using the calibrations to provide insight into
the underlying physical quantities,

● Simulation​, which includes the generation of an underlying physical interaction, its
detector response, and the consequent reconstruction to mimic physics data, and

● Analysis​, which uses the reconstructed information to obtain a physical result.

To implement all the categories above can require an experiment to develop and maintain
several millions of lines of software involving tens of thousands of different interrelated
algorithms. Such a challenge is made tractable by breaking apart a large-scale system into
separable components, which can evolve independently of each other. This flexibility also
means components can be specialized to deal with the processing needs of a (e.g.) computing
site whose storage interface differs from that of other sites.

By stipulating a set of rules and APIs, each framework imposes a uniformity in how components
are written, initialized, and executed, as well as how they communicate with each other. This
uniformity enables framework users to (a) apply one programming approach to a myriad of
data-processing tasks, and (b) more easily grasp how many different processing configurations
function. A framework can thus assemble a workflow simply by consulting a user-supplied
configuration that specifies which components to use, how to initialize them, and how to
schedule them to process data.

Given their historic success, frameworks will continue to be critical software systems that enable
HEP experiments to meet their computing needs. As in the past, framework evolution will be
driven by such needs and by both software and hardware changes in the computing landscape.

Computing landscape

For decades, it was sufficient for a framework process to execute on only one CPU core.
Computing clusters and large-scale batch systems were deployed and have achieved
impressive data-processing throughput using only commodity CPU hardware. However, as CPU
clock rates have plateaued, computing nodes now include multiple integrated CPU cores,
performing computations in parallel to keep up with Dennard scaling.

HEP data-processing frameworks have transitioned (or are transitioning) to being able to exploit
multiple cores on a computing node. This can be achieved by simply executing multiple
processes on the same node, or by using multi-threading, where a single process accesses
multiple cores through threads. Whereas multiprocess programs are simpler to handle due to
distinct memory spaces, multi-threaded programs have the advantage of reducing memory
usage at the cost of adopting a more complicated programming model.

Further evolution, both in frameworks and workflow management, will be needed to exploit
computing resources from non-x86 CPUs as well as non-CPU hardware, for example GPUs or
FPGAs. In addition to hardware changes, HEP frameworks will need to evolve to effectively
utilize computing at non-traditional HEP computing sites such as commercial Cloud computing
or High-Performance Computing centers, which support preemptible, distributed, and
heterogeneous applications. The DOE’s leadership computing facilities, in particular, are
constructing extremely parallel systems, which favor non-CPU computation to achieve their
stated performance within an affordable energy budget. Significant effort within the HEP
community will be required to develop and deploy framework solutions that meet these
computing challenges.

Conclusion
We invite the HEP community to acknowledge the importance of data-processing frameworks,
their successes, and the computing challenges such frameworks face. Frameworks have
weathered computing revolutions in the past; they will do so again with support from the HEP
community.

This LOI serves as a preface to a white paper that will expand on the motivation for
data-processing frameworks, how the changing computing landscape will affect those
frameworks, and what endeavors will be necessary to meet upcoming framework challenges.

