Wire-Cell Toolkit

A Snowmass 2021 Letter of Interest in Experimental Algorithm Parallelization (CompF1)

Brett Viren for the Wire-Cell team

July 13, 2020

1 Overview

As the name implies, the Wire-Cell Toolkit (WCT) takes a bottom-up approach as contrasted with
the top-down approach that is usually identified with software frameworks. Instead, the WCT C+—+
libraries provide modular layers of functionality giving an application developer choices in how much
or how little to adopt.

WCT infrastructure is general purpose and may be used in many domains. Due to its birth in
the domain of liquid argon time projection chamber (LArTPC) detectors including MicroBooNE([1],
those in the SBN program|2], DUNE{Abi:2020loh} and R&D on novel LArTPC readout technolo-
gies|3| it has many algorithm-level “batteries included” relevant to LArTPC detector R&D and
operation. These include state-of-the-art LArTPC noise and signal simulation, digital noise filter-
ing[4] and signal processing|5| and an implementation of a 3D tomographic method|6] to reconstruct
TPC ionization patterns (which provided the original “Wire-Cell” name).

For the remainder of this letter, the main aspects of the toolkit are described at a high level.
Many more details may be found onlineﬂ

2 Interfaces

Strongly influenced by Gaudi|7|, a core layer of WCT consists of a set of pure, abstract base classes,
aka interfaces. A plugin/factory method allows implementations of interfaces to be dynamically
constructed and later located given a concrete type name and optional instance name.

There are two distinct categories of interfaces in WCT: components and data. Components make
up the “verbs” and data the “nouns” of a WCT application vocabulary. Component methods that
accept data interfaces do so via shared pointer such that all data outside the context of the method
body is immutable and data memory is automatically and properly managed.

3 Component composition and execution

The developer may chose how to compose component classes into an application. For example, one
may “hard-code” a composition of concrete component and data implementations. This is inflexible
and more effort than the alternative but is often used in unit tests.

The primary composition idiom that the toolkit supports is that of a data flow graph. The com-
ponents form graph nodes which are connected through identified /ports (associated with component

"https://wirecell.bnl.gov/

https://wirecell.bnl.gov/

method arguments) by graph edges that represent the passing of data of specific type. The graph
construction driven by user configuration in a way that assures graph completeness and type-safety.

The execution of components in a WCT data flow graph is itself performed through an abstract
interface. This allows different graph execution engines to be developed and WCT provides two.

The first engine (pgrapher) provides single-threaded execution and a graph traversal policy
which minimize memory usage. It is preferred in jobs where non-WCT portion of the job is sub-
stantial and does not utilize multiple threads.

The second engine (tbbflow) makes use of T BBEI flow graph library to execute a number of WCT
components concurrently. The graph traversal policy of this engine allows for data pipelining. That
is, multiple “events” may be “in flight” through the graph at any given moment which can help to
avoid idle threads.

This component-level parallelism allows WCT to fill in a “mid-grained” gap in the granularity
spectrum of parallel processing. That is, individual WCT components may be single-threaded or
internally utilize GPU, SIMD or loop-level parallelism, the tbbflow engine allows for component-
level parallelism and of course, multiple WCT jobs may run in the usual “embarrassingly parallel”
manner.

4 Configuration

At the C++ level, configuration objects are currently represented as J sonCPPE] objects. The appli-
cation may manually construct a configuration objects and dispatch it to the appropriate instance
of a “configurable” or the WCT configuration manager may be used. It supports loading compressed
or plain JSON files and files written in the Jsonnetﬂ data templating language.

WCT provides Jsonnet support code. Graph construction functions allow defining subgraphs
which may then be used as apparently simple nodes to build larger subgraphs until a final graph may
be represented as a single node. Jsonnet itself is a LISP-like functional language with many features
such as modules, iteration, comprehensions, branches, etc which allow complex configurations to be
easily constructed.

5 Application interface

The WCT provides a high-level interface called “app” which represents high-level execution. It is
the job of a WCT app to “do” something, typically by composing components and executing them.
The two data flow graph engines described above are each implementations of this interface. A
number of “apps” may be run in one full application although typical user jobs employ only one.

At the penultimate highest layer is the WCT Main component. It implements a configuration
protocol using simple strings, such as may be provided to main() and delegates to plugin and
configuration managers and then executes any apps.

At the highest level of the toolkit are external interfaces. The first is the command line inter-
face program called wire-cell which merely constructs a Main and passes to it the command line
arguments. Through this program the user may control WCT logging facility (based on spdlodﬂ),
indicate plugins and most importantly provide configuration files and additional configuration pa-
rameters.

*https://www.threadingbuildingblocks.org/
®https://github.com/open-source-parsers/jsoncpp
“https://jsonnet.org
Shttps://github.com/gabime/spdlog

https://www.threadingbuildingblocks.org/
https://github.com/open-source-parsers/jsoncpp
https://jsonnet.org
https://github.com/gabime/spdlog

Another external interface connects to the art[8| framework and the LArSoft|9] data model. It
exists as part of the LArSoft project in the larwirecell package. It provides an art “tool” class
which delegates to the WCT Main class where the string arguments are provided to the tool by
art configuration facilities. The tool may be used directly and in addition a general purpose art
module is provided which connects the tool to the larger art execution cycle. The larwirecell
package also includes WCT components which depend on LArSoft data classes and which provide
conversion to and from WCT data interfaces.

6 Packaging

The core portion of WCT software is provided as a git repositoryﬁ] with a number of subpackages,
each providing a shared library. Dependencies between these packages and with third party software
is strictly managed. The build system is based on Waﬂ which allows variant builds to produced
which selects a subset of the dependency graph. For example, core functionality does not depend
on ROO”[FE] while TBB is only required for the multi-threaded graph execution engine.

Waf is also exploited to provide for so called WCT “user packages” (WCUP). These are simple
to produce and skeletons may be generated from templateﬂ A WCUP closely resembles the core
subpackages and this enables novel work to be started easily later if it becomes accepted it may be
easily merged into the core repository.

7 Ongoing Development

The Wire-Cell team have solved crucial infrastructure and algorithm level problems in the current
WCT. Novel development continues in both of these directions.

Various lines of development at the algorithm level are ongoing. The existing signal processing
components are being factored to reduce their granularity to increase parallelism. A Deep Learning
model has been developed to increase the signal processing efficiency for the very challenging case
where ionization tracks are near normal to LArTPC wire planes. For both signal processing and
simulation, effort which is part of HEP CCE—PPS@ has ported computational intense algorithms
for offload to GPU via direct CUDA implementations and more recently device-portable layer based
on Kokkod'|

The WCT infrastructure development is attacking the scaling problem that GPU offload creates.
Depending on the amount of computation offloaded to the GPU the overall job may require 100s or
1000s of cores to avoid GPU idling. This has motivated development of multi-process and multi-host
applications which communicate via high performance message passing. The ZeroMQ-based ZIOE

Shttps://github.com/wirecell/wire-cell-toolkit
"https://waf.io

8https://root.cern
“https://github.com/brettviren/moo

198ee dedicated LOI regarding HEP CCE-PPS.
Uhttps://github.com/kokkos/kokkos
2https://brettviren.github.io/zio

References

[1] R. Acciarri et al. “Design and Construction of the MicroBooNE Detector”. In: JINST
12.02 (2017), P02017. por: 10 . 1088 / 1748 - 0221 / 12 / 02 / P02017. arXiv: 1612 . 05824
[physics.ins-det].

https://github.com/wirecell/wire-cell-toolkit
https://waf.io
https://root.cern
https://github.com/brettviren/moo
https://github.com/kokkos/kokkos
https://brettviren.github.io/zio
https://doi.org/10.1088/1748-0221/12/02/P02017
http://arxiv.org/abs/1612.05824
http://arxiv.org/abs/1612.05824

package is used to develop GPU and file I/O services that may be as asynchronously accessed by
multiple threads, processes and hosts. The ZIO library is also a candidate to supply self-trigger
infrastructure to the DUNE far detector data acquisition system and thus its use in WCT represents
a paradigm shift where large-scale offline applications begin to resemble highly integrated, large scale
online distributed data processing systems.

2]

3]

4]

[5]

9]

M. Antonello et al. “A Proposal for a Three Detector Short-Baseline Neutrino Oscillation
Program in the Fermilab Booster Neutrino Beam”. In: arXiv:1503.01520 (2015). arXiv: 1503.
01520 [physics.ins-det].

B. Baibussinov et al. “Operation of a LAr-TPC equipped with a multilayer LEM charge read-
out”. In: JINST 13.03 (2018), T03001. por: 10.1088/1748-0221/13/03/T03001. arXiv:
1711.06781 [physics.ins-det].

R. Acciarri et al. “Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC”.
In: JINST 12.08 (2017), P08003. DO1: |10.1088/1748-0221/12/08/P08003. arXiv: |[1705.07341
[physics.ins-det].

C. Adams et al. “lonization electron signal processing in single phase LArTPCs. Part I. Al-
gorithm Description and quantitative evaluation with MicroBooNE simulation”. In: JINST
13.07 (2018), P07006. pDoI: 10 . 1088 / 1748 - 0221 / 13 / 07 / P0O7006. arXiv: 1802 . 08709
[physics.ins-det].

Xin Qian et al. “Three-dimensional Imaging for Large LArTPCs”. In: JINST 13.05 (2018),
P05032. po1:10.1088/1748-0221/13/05/P05032. arXiv: |[1803.04850 [physics.ins-det].

G. Barrand et al. “GAUDI - A software architecture and framework for building HEP data
processing applications”. In: Comput. Phys. Commun. 140 (2001), pp. 45-55. DOI: [10.1016/
S0010-4655(01)00254-5.

Robert K. Kutschke. “art: A framework for new, small experiments at Fermilab”. In: J. Phys.
Conf. Ser. 331 (2011). Ed. by Simon C. Lin, p. 032019. DOI: 10.1088/1742-6596/331/3/
032019.

E.L. Snider and G. Petrillo. “LArSoft: Toolkit for Simulation, Reconstruction and Analysis of
Liquid Argon TPC Neutrino Detectors”. In: J. Phys. Conf. Ser. 898.4 (2017). Ed. by Richard
Mount and Craig Tull, p. 042057. poI: 10.1088/1742-6596/898/4/042057.

http://arxiv.org/abs/1503.01520
http://arxiv.org/abs/1503.01520
https://doi.org/10.1088/1748-0221/13/03/T03001
http://arxiv.org/abs/1711.06781
https://doi.org/10.1088/1748-0221/12/08/P08003
http://arxiv.org/abs/1705.07341
http://arxiv.org/abs/1705.07341
https://doi.org/10.1088/1748-0221/13/07/P07006
http://arxiv.org/abs/1802.08709
http://arxiv.org/abs/1802.08709
https://doi.org/10.1088/1748-0221/13/05/P05032
http://arxiv.org/abs/1803.04850
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1088/1742-6596/331/3/032019
https://doi.org/10.1088/1742-6596/331/3/032019
https://doi.org/10.1088/1742-6596/898/4/042057

	Overview
	Interfaces
	Component composition and execution
	Configuration
	Application interface
	Packaging
	Ongoing Development

