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Abstract:
The IceCube Neutrino Observatory is a km3 neutrino detector deployed at the South Pole. IceCube
measures neutrinos by detecting the optical Cherenkov photons produced in neutrino-nucleon
interactions. The IceCube Neutrino Observatory is currently planning for a significant upgrade,
which includes various new types of calibration modules, further increasing the computational
needs of simulation and data processing. The increase in complexity and competition for precious
resources demands their efficient use once acquired. It is well known in many computational
communities, both within and outside the scientific community, that future gains in hardware
performance are going to come from additional cores and specialized hardware designed with a
concurrent programming model in mind (e.g. GPU, TPU, etc...). The core software group in Ice-
Cube is planning to adapt its production code to take advantage of both specialized and standard
multi-core, multi-GPU systems.

1Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube
2Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube-gen2
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Introduction

The IceCube Neutrino Observatory [1], located at the South Pole, instruments a cubic kilometer
of Antarctic ice. IceCube uses 5160 digital optical modules (DOMs) arranged on 86 strings in a
hexagonal array to detect Cherenkov radiation from relativistic charged particles emitted during
neutrino interactions. This configuration can detect neutrinos as high as EeV energies while the
center, more concentrated region of DOMs, called DeepCore, is optimized to extend the detection
energy down to a GeV. The IceCube Upgrade plans to improve on the resolution of GeV neutrinos
by adding an additional seven strings concentrated around DeepCore with varying DOM designs
and additional calibration devices [2]. To improve resolution of TeV to EeV neutrino detection and
increase the detection rate, Gen2 will add 120 strings to instrument a total volume of 7.9 km3 [3].

With the ever increasing demands on computational resources and increasing complexity of
modern analyses it is becoming critical to utilize all accessible resources efficiently. This also re-
quires the ability to run in diverse, heterogeneous environments, since cloud, grid, and cluster
configurations are rarely coordinated with global homogeneity as a goal. The modern scientific
software stack needs to be able to run efficiently on a wide range of operating systems and hard-
ware. Concurrency, on all levels, is the key to achieving optimal efficiency. Machine Learning
is driving the development of specialized hardware, and code developed for a single core, sin-
gle GPU system is rarely trivially portable. IceCube has tentative plans to invest over the next
several years in porting code to Kokkos [4] (or another similar framework/library) in order to
broaden the distributed hardware available to the collaboration. This includes IceCube’s internal
C++/Python-based framework. While the hardware access gains are obvious, this comes at a cost
where a continued, and possibly increased, investment in modern C++ training, emphasizing best
practices, will be needed.

Existing Parallel Code

The the highly parallel nature of the simulation of photon propagation benefits with substan-
tial acceleration of our simulation on GPGPUs [5]. All of the simulated photons go through the
same steps before getting absorbed or hitting a sensor: photon propagation between the scat-
tering points, calculation of the scattering angle and new direction, and evaluation of whether
the current photon segment intersects with any of the optical sensors of the detector array. Each
GPU performs the same computational operation on individual photons in parallel across mul-
tiple threads. Although a single thread runs slower than a typical modern CPU core, running
thousands of them in parallel results in much faster processing of photons on the GPU. Through
the use of GPUs, we have achieved significant acceleration of the photon propagation, by factors
of 150 or more compared to running on a single CPU core. The same code that propagates pho-
tons in simulation can be used for reconstruction as well, allowing for on-the-fly event hypothesis
generation.

Future Algorithms

The IceCube detector simulation includes individually calibrated PMT waveforms, optimized
event resampling for low-energy background simulation, and detailed models of the optical prop-
erties of the ice. The detector simulation is currently the second largest consumer of resources in
the simulation chain. The current detector, consisting of roughly 5160 identically operating Dig-
ital Optical Modules (DOM), naturally lends itself to parallelization. Given the large number of
modules that can potentially process waveforms in a given event, there are potential gains that
can be achieved through the use of GPUs, as opposed to multi-core systems, for both the detec-
tor response simulation and the waveform deconvolution. The potential gains from a GPGPU
implementation will soon be an active area of study within the IceCube software group.
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A potential area of overlap with the Machine Learning group is the use of Generative Ad-
versarial Networks (GANs) for fast simulation of traditionally resource-intensive showers. Sim-
ulation of sufficient background statistics continues to limit several analysis channels in IceCube,
especially analyses sensitive to muon bundles from cosmic-ray air showers (common at moderate
to high energies). Background-reduction techniques developed internally are currently limited in
utility to single-muon backgrounds. Simulating backgrounds that include muon bundles (multi-
ple muons originating from a single hadronic shower, with relatively small lateral spacings and
small opening angles) still requires a full shower simulation using CORSIKA where only the in-
formation from energetic muons at IceCube depths is saved. We forsee the use of GANs to quickly
simulate muon bundles at IceCube depths becoming an active area of investigation over the next
several years.

IceCube’s core production chain was written serially, with only select additions being able to
take advantage of multiple cores or accelerators. With the resurgence of heterogeneous computing
and hardware performance expected to improve mainly via increased counts of GPU and CPU
cores, we will need to adapt our core software to allow for parallel execution. Such changes allow
us to consider other languages and libraries that may not have existed two decades ago when
the IceCube software was first developed. While Go is somewhat popular in the system space,
the garbage collector is an unpalatable comparison to Python’s memory issues. Rust is another
alternative, with special interest in its memory correctness by design. Modern versions of C++,
such as C++20, offer significant improvements over C++98 while still being somewhat familiar to
programmers. Parallel libraries are also of interest for use on accelerators, with Kokkos currently
as the most attractive option. Such libraries, if fully integrated throughout the codebase, would
allow significant portability, running a single codebase on multiple architectures.

Best Practices

The ability to predict resource usage, to allow for efficient scheduling in a distributed environ-
ment, is of high priority. This need will become even more so as the number, type, complexity,
and density of optical modules increases during the Upgrade. Software engineering best practices
dictate knowing the time and space complexity of each critical component of a software system.
IceCube invests in code reviews as an attempt to manage and mitigate the accumulation of techni-
cal debt. Code reviews are required for all new projects before inclusion into the production stack,
though historically there has not been a requirement on reporting, let alone optimizing, compo-
nents’ resource usage. It is the goal of IceCube to fully understand resource scaling behaviors in
the core production chain and make reporting and optimization a criteria in future code reviews.

The IceCube software group is currently working on tools to expand use of standard CI/CD
practices and extend them to include Continuous Benchmarking and Validation (CB/CV), to catch
software commits that impact resource usage and high-level physics systematics, respectively, in
a timely manner (e.g. nightly). This will become even more critical as IceCube adopts, develops,
and ports more concurrent software, which can be notoriously difficult to debug compared to
serial implementations.
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