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1 Introduction

Particle accelerators play a key role in high energy and nuclear physics studies,
and many other applications. Design and operation of those sophisticated and
expensive devices require extensively using multi-physics computer simulations.
Those multi-physics computer models include space-charge effects, beam-beam
effects, electron cloud effects, and other physical effects. In order to simulate the
aforementioned effects self-consistently, one has to solve the Poisson equation
at each step. A parallel, fast Poisson solver will be critical for the quick return
in accelerator modeling applications.

In the accelerator community, a number of fast Poisson solvers were used
and developed for accelerator modeling applications [1–24]. Subject to different
boundary conditions, those Poisson solvers involve different numerical methods
that solve the Poisson’s Equation on a grid. For an open boundary condition,
an FFT-based Green’s function method was developed [3–10]. For a closed
boundary condition with regular shape, a finite difference spectral method was
used [11–15]. For a closed boundary condition with irregular shape, a multigrid
finite difference method is often used [16–18, 25].

Besides solving the differential Poisson equation directly, the integral equa-
tion method provides a category of alternative solvers based on the integral
format. These solvers convert the differential equation into an integral equation
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on the boundary. They do not need the grid that covers the whole domain and
thus avoid any issues caused by the grid. The fast multipole method [19, 20],
which has been implemented in a few accelerator simulation tools [21, 22], can
be especially efficient with open boundaries. The integral equation method can
also be applied to boundary value problems with any geometry. Finally, we
note that some algorithms and codes [23, 24, 26] have been developed by com-
putational mathematicians but have not been transplanted into the accelerator
community.

2 Current and future challenges

So far, those Poisson solvers were developed on different computer platforms for
accelerator modeling applications. Some of the implementations are serial while
others take advantage of parallel architectures. They were also developed using
different programming languages, e.g. Fortran, C++, Python or MatLab. There
is also no uniform interface for accelerator modelers to use those Poisson solvers
conveniently or interchangeably. Furthermore, the parallel Poisson solvers have
often not been optimized for good efficiency and scalability on massive parallel
computers, and very few have been ported to GPUs.

3 Advances needed to meet challenges

In order to meet the above challenges, we propose to develop a fast, portable,
parallel Poisson solver library, which would improve the usage of those fast
Poisson solvers and benefit the accelerator modeling applications. Modern pro-
gramming practices and tools can be leveraged to develop the library that will
be portable across CPUs and GPUs, and with standardized interfaces that make
it easy for accelerator modelers to use in their applications, toolkits and ecosys-
tem [27, 28]. Multiple levels of parallelism (on-node and multi-nodes) will be
supported, with special attention to efficiency and scalability. The library will
also include a detailed and up-to-date user documentation, as well as automated
test suites and well-benchmarked examples.
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