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We present general ideas for running large-scale detector simulations on high-performance computers
(HPC). Some properties of HPC systems are considered, e.g. , and several studies to benchmark and
evaluate the use of these machines for high-energy physics purposes are proposed.
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Significant funding and effort is being invested in the construction of High-Performance Computing (HPC) systems
worldwide [1–6]. These systems present an excellent opportunity for large-scale computing, but they are best suited
for problems that satisfy several constraints:

• Workflows should not demand low latency. HPCs are generally high-efficiency, and therefore do not have resources
available on short notice.

• Workflows should have minimal input and output (I/O), including access to external services. Several solutions to
avoid I/O constraints, including high-speed buffer systems, have been developed, and clever caching and merging
systems can work around some of these constraints. This also means that database access is normally limited, so
that (for example) LHC data reconstruction is not well suited to run on HPCs, while MC reconstruction which
uses a limited subset of conditions that might be more easily distributed could run well on HPCs.

• Workflows should be able to take advantage of modern hardware, including accelerators. Many modern HPCs
integrate accelerators like GPUs. Cost limitations have resulted in inhomogeneous systems in some cases, so that
code able to run on traditional CPU resources as well as accelerators is ideal.

Detector simulation for experiments at the Large Hadron Collider (LHC) [7] is a workload ideally suited to run
on these HPCs, as it is able to satisfy all of these constraints. Several groups are actively working on ways to use
accelerators, such as GPUs, within simulation workloads [8, 9], including fast simulation [10]. Any use of machine
learning in simulation can freely incorporate accelerators thanks to tools like TensorFlow [11]. Scheduling frameworks
like Ray [12] have already been adopted for the purpose of distributing detector simulation work over a large HPC [13].

High-performance computers generally have high-speed interconnects between their computing nodes, an expensive
feature ideal for large-scale n-body simulations [14–16], material simulations [17], and other problems that are easily
distributed over many cores. LHC simulation tends to run in an ‘embarrassingly parallel’ event-per-thread mode,
which inherently does not make use of these interconnects. Some inhomogeneous HPCs might have GPUs available on
only a fraction of nodes, so that the distribution of work could be re-imagined; instead of sending one event to one
computing core, different parts of an event (or even individual heavy computations) could be scheduled to run on
hardware where they are most efficient. As long as simulations retain the concept that all particles are independent of
one another, there would be no loss in precision from such an approach. This could have the potential side-benefit of
having all the data a calculation requires residence in a low-level cache. There are latencies associated with moving
data between nodes, and with the serialization and offload of data to a GPU which could in some cases become
substantial. These overheads can be mitigated somewhat with a sufficiently large workload – that is, with a large
enough volume of work that no resources are left idle.

One particularly data-intensive aspect of current LHC simulation is the modeling of “pile-up”, the background of
relatively low-energy interactions in addition to the one collision of interest. In current LHC conditions this means
overlaying about 50 additional interactions for every one of interest; during the HL-LHC [18] that number will increase
to 200, and in some FCC-hh [19] scenarios it increases further to 1000. Simulating each of these interactions is generally
5-10 times less expensive than simulating one of the “interesting” interactions. However, once 50 must be simulated this
dominates the total event simulation time. Historically, therefore, the experiments have modeled pile-up by overlaying
pre-simulated interactions from a library [20, 21]. This has been done either by overlaying individual interactions one
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at a time or by overlaying a pre-constructed set of background events (e.g. 50 at a time). These libraries of pile-up
events represent a significant data distribution challenge, particularly because many simultaneous simulation processes
on an HPC might attempt to pull background events from the same source. On standard Worldwide LHC Computing
Grid [22] resources, accessing these data causes significant wear on the local disks. On an HPC system, therefore, one
of several alternative solutions might be preferable. If the simulation is sufficiently fast (e.g. for a fast simulation) and
data movement is sufficiently expensive, simulating these additional events may again become practical. This could
include the possibility of using a faster flavor of simulation for the pile-up events than for the collision of interest.
Alternatively, the library of background events could be held in memory on a small number of nodes that are used
specifically to model pile-up, either serving data to the processing nodes or executing the pile-up modeling algorithms
locally and returning results to the simulation nodes.

The question then arises: Given the latencies associated with pushing data between nodes, serialization, and offload
to a GPU, are there any rules that can be derived to determine when such a re-imagining of the distribution of
simulation work in an HPC would provide some real benefit? If not, future HPCs hoping to support workflows like
LHC simulation may be able to save significant costs. If so, can modern scheduling software adapt to these latency
issues to efficiently make use of GPUs when available, but continue to run algorithms on CPUs if the latency would be
too large?
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