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1 Simulation-based optimization of accelerator design

When designing new particle accelerators — or when designing new modes of operation for existing acceler-
ators — it is essential to perform design optimization. This involves tuning a number of design parameters
(e.g. strength of focusing elements, accelerating phase and accelerating gradient, positions of beamline
elements, etc.) so as to maximize one or several measures of accelerator performance (e.g. beam quality,
final energy, dynamic aperture, energy efficiency, etc.). The need for this type of optimization is ubiqui-
tous across all types of accelerator experiments and facilities, including linacs, storage rings, free-electron
lasers, and laser-plasma accelerators.

In general, evaluating the accelerator performance for one set of design parameters requires a so-
phisticated numerical simulation. Therefore, in order to search the high-dimensional space of design
parameters and find the optimal point (or the Pareto front in the case of multi-objective optimization),
many numerical simulations need to be run. However, advanced and realistic numerical simulations can
be computationally expensive. It is therefore crucial, when searching the space of design parameters, to
carefully choose the points that will be simulated so as to minimize the number of simulations needed to
reach the optimal point (or the Pareto front).

2 Advantages of surrogate-model optimization

Historically, the accelerator community has used a variety of optimization algorithms to choose points
to simulate, including the Nelder-Mead simplex algorithm, genetic algorithms, and particle swarm algo-
rithms. However, while these optimization algorithms are robust and computationally cheap, they extract
a limited amount of information from previously simulated points, and, as a result, they may still require
many simulations to reach the optimal point or the Pareto front.

One alternative approach is to use a surrogate model in the optimization process. A surrogate model
can approzrimately predict the performance of the accelerator for new sets of design parameters based
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on the knowledge extracted from previously simulated points. The surrogate model is much faster to
execute than the actual numerical simulation. As such, a surrogate model can inform the choice of the
next points to simulate, so as to select only the most promising points.

While a number of machine learning techniques could be used to build surrogate models, in practice
recent research in the accelerator community has focused on two techniques: neural networks (NN) [1], 2 3]
and Gaussian processes (GP) [, [5]. Using these techniques, it was shown that, for certain accelerator
design problems, surrogate-model optimization requires significantly less simulations than traditional
genetic algorithms — in some cases by one or two orders of magnitude [T}, 5].

3 Needs and challenges in the near future

These early results illustrate the potential of surrogate-model optimization for accelerator design. Nev-
ertheless, much remains to be done to address the needs of the community in the near future. Here, we
suggest two areas of development.

3.1 Exploring best practices for surrogate-model optimization

There are many choices in the details of the surrogate optimization algorithms, and the community needs
to build up knowledge and experience in finding the best practices that will suit a given accelerator design
problem.

For instance, one key aspect is the sampling strategy for new simulated data points, as it affects both
the accuracy of the surrogate model and the convergence speed of the optimization. The community
needs to explore various aspects, such as how to balance exploration and exploitation, how often to
retrain the surrogate model and with how much data, and how to sample the data in a parallel, asyn-
chronous manner. For some of those issues, methods from the vast literature on Bayesian optimization
and reinforcement learning need to be tested and applied in the context of accelerator design. There
is also a need for a reliable estimate of the uncertainty on the approzimate prediction of the surrogate
model. This uncertainty appears naturally in the case of GP, but is dependent on the choice of hyperpa-
rameters. On the other hand, NN do not naturally feature an uncertainty, and thus extensions have to
be considered (e.g. ensembles of NN, Bayesian NN, deep GPs).

Finally, it would also be desirable to have the capability to extract information from low-cost sim-
ulations (e.g. simulations at low resolution, with reduced geometry, or with simplifying assumptions)
in order to guide the optimization of costly, more realistic simulations. In order to address this need,
the community could take advantage of the literature on transfer learning and multi-fidelity Bayesian
optimization.

3.2 Surrogate-model optimization framework

Surrogate-model optimization is a complex workflow that interleaves detailed numerical simulations,
efficient sampling of new data points, and training of machine learning models. There is a strong need for
a robust and flexible framework that enables users to rapidly setup this workflow. Ideally, this framework
should be able to interface with high-performance computing facilities (through their batch submission
system), support common machine learning techniques (NN and GP) while leaving enough flexibility
to the user to customize these algorithms, and support multi-objective, multi-fidelity and asynchronous
workflows.

Currently, there does not seem to be a single framework that simultaneously satisfies those require-
ments. Instead, different research groups have been building upon different existing open-source frame-
works (e.g. libEnsemble [6} [7], xopt [8], Fireworks [9] [10], Ocelot [I1]), in order to use or implement some
of the above requirements. Given the diversity of accelerator applications and the exploratory state of the
field, it is unclear at this point whether a single framework can be flexible enough to support all use cases.
However, as the field matures, synergies between research groups and consolidation of their respective
frameworks could be sought. One first step in this direction could be the creation of an open-source
repository to share reproducible examples of surrogate-model optimization from various groups. More
broadly, this effort will also be facilitated by the adoption of shared data standards and standardized
modeling workflows across the community [12].

4 Conclusion

Surrogate-model optimization of accelerator designs is a nascent and promising area of research. By
building upon recent development in machine learning tools, this field holds the potential to accelerate
the optimization of particle accelerators, while making optimal use of available computational resources.
In addition, thanks to the savings in the number of full scale simulations that are needed with these
methods, each simulation can afford to be more precise (e.g., higher resolution, higher-order models,
better description of halo) and/or complete (e.g., more physics, larger fraction of the machine up to
start-to-end modeling, virtual accelerators [13]). This will foster breakthroughs in beam and accelerator
physics, enabling the design, development and operation of accelerators that would not even be possible
otherwise.
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