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The Large Hadron Collider (LHC) [1] at CERN, in Switzerland, has planned a major              
upgrade to extend its operation for more than a decade, starting from 2027. The upgraded               
project is called High-Luminosity LHC (HL-LHC) [2] and it will deliver an increase in              
luminosity by a factor of 5 to 7. Paramount importance to the physics program is the                
simulation of physics processes. Already, the simulation of the passage of particles through             
the ATLAS detector of the LHC [3] occupies more than a third of the available computing                
resources [4]. To maintain a low uncertainties for future measurements, the amount of             
simulations needed scales with the luminosity. Recent studies predict the computing capacity            
required to produce adequate simulations to exceed the planned computing budget after 2026             
[5]. This still holds even if most of the detector simulation is done with fast simulation                
methods, such as response parametrization. 

For the simulation of the passage of particles through and their interaction with a              
complex detector apparatus, the software toolkit Geant4 [6] is widely used. Detailed profiling             
of the toolkit, using as a paradigm the ATLAS detector, indicate that significant time is spent                
on parts of the software that explore the geometry of the detector volume. The execution time                
of such methods can take up to 50% of the total simulation time of complex geometries, such                 
as the electromagnetic calorimeters. The main task of the geometry exploration is the             
calculation of the fly path of a particle instance (i.e. time snapshot) over a simulation step in                 
time. Of particular importance, is the length of the distance from the initial step point to the                 
geometry volume boundary, along the direction of the particle momentum. This length            
eventually determines the physics process the particle can undertake at the simulation step.             
Due to the serial implementation of the simulation process this calculation occurs in every              
simulation step – O(104) for the passage of a 1 GeV photon through the end-cap calorimeter                
of the ATLAS detector. 

This LoI introduces an approach to learn a geometry beforehand in order to reduce the               
computational demand while the actual simulation is being produced. This is achieved by the              
construction of a map that corresponds Euclidean space-points, described by their position            
and direction, to ray lengths until the facing boundary of the volume. The map to achieve this                 
task has high dimensional inputs (at least five, three for the position and two for the direction)                 
and should be based on a general enough approach to be applicable to arbitrary complex               
geometries. For these reasons, Machine Learning (ML) techniques are utilized in order to             
approximate the function that maps the space-points inputs to the lengths of interest. The use               



of ML comes with two significant advantages. First, the portability of the method is assured               
among current and future computing architectures. Examples of these are (non-)x86 CPUs or             
accelerator hardware, such as GPUs or TPUs. This is achieved by the usage of industrial ML                
frameworks that abstract hardware-specific implementation out. Second, the method is          
efficiently parallelizable. Although the current version of Geant4 is executed in a serial             
fashion, extensive R&D projects within the simulation community have published studies and            
plans to extend the High Energy Physics (HEP) simulations in a parallel manner, i.e. simulate               
the passage and interaction of multiple particles at the same time using a Single Instruction               
Multiple Data/Thread model [7]. Our ML approach can be integrated in this simulation             
paradigm and especially benefit by the large parallel computation capabilities of novel            
accelerator hardware. 

In order to train and optimize the ML algorithm the production of a sufficiently large               
and accurate dataset is needed. This is generated by running the original Geant4 simulation in               
the particular geometry of interest. First, the geometry is sampled to create space-points with              
random position and direction. From these points idealistic particles are shot and the distance,              
along their directions, to the volume boundary is calculated and stored by the application.              
These idealistic particles do not interact with the material volume, as this information is not               
needed for the calculation. Thus, the production of the training dataset is computationally             
much lighter than the complete detector simulation and only takes place once. 

These datasets are used to train and optimize the ML algorithm for the distance              
prediction. In particular, a Deep Neural Network (DNN) with fully connected layers is used              
for the distance regression task. The inputs describe the position and direction of the particle               
instance and the output describes its distance to the volume boundary. It is important the               
predicted distance is not larger than the true distance, as then the application might be forced                
to propagate the particle outside of the physical volume. In order to enforce this constraint to                
the DNN training, a custom loss function is used that penalizes over-predictions more             
severely than under-predictions. A more sophisticated DNN architecture, based on the           
PointNet++ concept [8], is also investigated. The benefit of the latter lies in the fact that it can                  
directly conduct 3D convolution operations on the unordered and irregular dataset at hand, in              
order to extract local features in a hierarchical manner. These features can be then              
interpolated to any point to extract point-wise predictions. The predictions of the ML             
algorithm are validated by comparing with truth distances calculated by the Geant4            
application. 

The purpose of the studies described in this LoI is to investigate whether the              
evaluation time of the ML algorithm scales weaker than the corresponding calculation of             
Geant4 with increasing geometry complexity. Thus, the potential of the geometry           
pre-learning approach to accelerate HEP simulations. To demonstrate this an automated           
pipeline is set up and executed at Argonne computing facilities. First, geometries of             
increasing complexity are constructed (e.g. nested twisted trapezoids) and space-points are           
randomly sampled within them. The Geant4 application is evaluating the corresponding           
distance of interest for each space-point and the output dataset is used to train adequate ML                
algorithms that predicts the distances for each geometry. A scalable hyperparameter           



optimization package, called DeepHyper [9], is utilized to distribute the search for optimal             
DNNs for each geometry across multiple computing nodes. Finally, for each geometry the             
inference time of the ML algorithm is compared to the calculation time of the Geant4               
application. 

Upon successfully determining whether the pre-learned geometry approach can         
accelerate the whole simulation process, the ML algorithm should be integrated with the             
Geant4 toolkit. This can be achieved by using the VecGeom plugin [7] which is modular               
enough to allow various acceleration structures for geometry navigation. In this way our             
approach would be broad enough to be used for various HEP detectors with arbitrary              
complexity. This approach is an addition to the HEP community efforts to accelerate the              
simulation of physics processes and reduce the computing resources required to achievable            
levels in the coming years. 
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