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On behalf of the SNO+, THEIA, ANNIE, NuDot, and other collaborations, who make use of
RAT, RATPAC, and derivatives

Abstract: RAT-PAC is an open-source GEANT4-based toolkit that offers both micro-physical
simulation capabilities and analysis tools for high-precision event modeling, evaluation, and char-
acterization, from benchtop test stands to large-scale detectors.
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The RAT-PAC Monte Carlo simulation and analysis suite [1] is a free and open-source version
of the RAT toolkit. RAT was first written for the Braidwood reactor experiment [2], and is now
the official simulation and analysis package for SNO+ [3], DEAP, and MiniCLEAN [4] exper-
iments, thus benefiting from shared efforts in development and verification. A GEANT4-based
package [5], RAT-PAC (standing for “RAT Plus Additional Code”) was branched off from the core
RAT development some years ago, to form an open-source version of the code, available for public
use. RAT-PAC forms the basis of the official software for the THEIA collaboration [6], the pro-
posed third phase of ANNIE [7], and for the WATCHMAN collaboration, who are developing a
design for the NEO detector to be located at the AIT facility in the UK [8].

One of the great advantages of the RAT-PAC approach is that its procedural geometry description
allows the same code to be used to simulate or analyze data from a large-scale experiment and a
small benchtop test-stand. Figure 1 shows the detailed geometry of the full ktonne-scale SNO+
detector, and the even larger THEIA detector, and Fig. 2 shows the much smaller CHESS detector
at UC Berkeley/LBNL [9–11]. In addition to the flexible geometry descriptions, RAT-PAC takes
a micro-physical approach, relying on physical, rather than phenomenological models. For exam-
ple, individual photons are simulated hitting photon sensors and the resulting timing and charge
are evaluated photon-by-photon, rather than by application of a phenomenological risetime cor-
rection. Therefore, simulating both benchtop test stands and large-scale detectors with the same
micro-physical detail and the same code means that parameter measurements made by the bench-
top are more easily translated into the larger-scale detector. A measurement of, for example, the
light yield of a scintillator cocktail performed in a small-scale setup can be straightforwardly prop-
agated to predict performance in large detectors, complete with systematics associated with optical
models or even data acquisition approaches. Comparisons between simulations of Cherenkov and
scintillation light generated using RAT-PAC and data from test stands, such as at Penn, CHESS
at LBNL, and FlatDot at MIT, show good agreement. An example from FlatDot is shown in
Fig. 2 [12].

RAT(-PAC) is based on GEANT4.10 [5] and the GLG4Sim package written by Glenn Horton-
Smith, with custom code for scintillation and neutron absorption processes as well as a complete
model of PMT optics. RAT(-PAC) handles all stages of event simulation: from the propagation of
primary particles; production of optical photons via Cherenkov and scintillation processes; individ-
ual photon propagation, including a full optical model of all detector materials; photon detection
at the single PE level, including individual photon detector charge and timing response; and data
acquisition including full customisable simulation of front end electronics, trigger systems, and
event builders. It also allows root-formatted data to be used as input, and provides simple analysis
tools and ways to include many more, as well as a macro command structure for control. Lastly,
RAT-PAC also includes the ability to dynamically generate detector configurations via an external
database. Thus, RAT-PAC is a complete package that can be used with small modifications for
entire experiments.

As experiments grow in scale and use increasing numbers of photodetectors, RAT-PAC will need
to progress to reflect these needs. Planned improvements include:

• Updating dependencies to reflect currently-used versions (Python3, ROOT6, and Geant4.10.6)

• Adding generators for rare physics processes, such as the addition of a neutrinoless 124Xe
positron-emission/electron-capture (0νβ + /EC) decay generator [13], and double-beta de-
cays to excited states.
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• Incorporating new photodetector types in the public code, such as the Large-Area Picosecond
Photodetectors (LAPPDs) implemented in the ANNIE and CHESS branches.

• Improvements to simulation efficiency, which will be needed to speed up simulations of ex-
periments withO(105) channels, including the ability to parallelize aspects of the simulation.

These improvements will ensure that RAT-PAC continues to meet the needs of the liquid scintillator
and water Cherenkov community.

FIG. 1. (Left) RAT-PAC generated image of the ktonne-scale SNO+ detector. (Right) RAT-PAC simulation of a high-energy (GeV)
electron in the 50-ktonne THEIA detector, including full photon tracking. Blue shows Cherenkov photon track and red shows
scintillation.
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FIG. 2. (Left) Photograph of the CHESS PMT array. (Top centre) CAD image of the full CHESS detector. (Bottom centre) RAT-
PAC generated image of the full CHESS detector. (Right) RAT-PAC simulations of both Cherenkov (left) and scintillation (right)
signals show good agreement with data from the FlatDot experiment (bottom), up to a normalization factor reflecting the absolute
light yield of the liquid scintillator.
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