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1 Topic and Status

Research roadmaps in accelerator and beam physics are multi-decade activities, designing machines from source to
final detector and whose realizations are funded with billions of dollars. The data produced in both experiments
as well as modeling efforts is the basis for an evidence-based research approach.

Due to the high cost of these activities, detailed modeling activities are essential before investing in upgrades
and new constructions, and are instrumental in optimizing existing facilities. It arises naturally that the expertise
in the field could be brought together in the development of virtual twins of facilities [1], combining the know-how
of the community and producing research data curated in a science gateway. As of today, a variety of software
tools are deployed for design, pre-processing, modeling and analysis of the specifications in current and future
machines. Many of these tools are developed by various groups and developers with varying focus and conventions.
Consequently, physical input descriptions are often specific to existing modeling tools, which complicates data
exchange, testing new theories against large sets of previous results, and integration efforts such as start-to-end
modeling that could advance the field’s predictive capabilities.

As of today, except for activities such as those supported by the Consortium for Advanced Modeling of
Particle Accelerators (CAMPA), there is little coordination between different groups and activities that address
how to integrate existing frameworks into newly emerging workflows, such as complex multi-physics scenarios
between several simulation frameworks. This essentially leads to underutilized opportunities, re-invention and
under-maintained research tools, isolated solutions, longer integration cycles when exploring new approaches,
and consequently slower scientific process. This situation is at least in part reinforced by challenges integrating
computational science methods in modern physics curricula [2], need for new cross-domain career paths [3], and
sometimes limited adoption of open science principles [4].

2 Current and future challenges

2.1 Data

There exist a variety of low-level data file formats, which individual modeling tools use with custom-made
meta-data conventions to express the domain-specific data consumed and generated by individual tools. New
data formats and highly-tuned I/O libraries are continuously being developed by computer scientists and existing
paradigms, such as POSIX-I/O, are overtaken by modern approaches such as data streams, object storage and
relaxed constrains in highly-parallel I/0. Flexibility is needed with respect to these low-level file formats, to
quickly utilize progress in modern storage and data transport technology.

Furthermore, contemporary and planned advances in high-repetition rate experiments as well as simulation
needs for large-scale, high-resolution modeling and high-throughput computing continue to increase data rates
and data size demands significantly (by orders of magnitude). As an example, advanced accelerators anticipate
kHz facilities and simulation requirements are still making full use of the exponentially growing computing
capabilities at top-tier supercomputing centers - notably with significantly slower growth in available filesystem
storage bandwidth. Under these developments, file-based storage of high-fidelity data as well as manual data
analysis and curation efforts are increasingly becoming the bottleneck in the scientific process.

2.2 Workflows

Seldom is a single code sufficiently complete, accurate, and fast to simulate the full range of a physics design
without introducing many approximations. Most tools used for accelerator and beam modeling are not compatible
nor developed with the goal to be reused in overarching workflow [5]. Workflows are often manual and mostly
rely on access to domain-specific raw data, which may not be integrated into science gateways for curation and
sharing.

Productive reproducibility, such as re-playing the simulation design of another group, should become the
default for validating new physical results that increasingly rely on computational backing. This needs a high
degree of documentation and automation, overcoming manual and person-hour intensive sample comparisons.

Workflow tools that address the needs in a general way are emerging, rapidly evolving and need effort
(integration and continuous maintenance in an evolving software ecosystem) to be exploited for accelerator and
beam modeling. Generalizing design descriptions (inputs) to be shared between codes require the same level of
long-term commitment.



3 Advances needed to meet challenges

Generally, many in the community agree to address those challenges with standards that everyone can use,
integrate and contribute to [6]. With active contributions, standards are not set in stone but can be developed
just like software in versions as arising challenges are adopted and agreed upon, limitations are identified, and
refined solutions are emerging. Standards can emerge from a good documentation that is refined by including a
wider audience into the process, evolving into transparent decision processes and adoption of best practices over
time (versioning, citations for documents/data/software, compatibility strategies, open community governance,
etc.).

3.1 Data

For data exchange, defining meta-data in a file-format agnostic organization has been successfully demonstrated
for accelerator and beam data in the Open Standard for Particle-Mesh Data Files (openPMD) [7].} openPMD
organizes around a written, versioned text document that is supported by tooling for validation, examples, a
project catalogue, libraries and programs, which all have their respective documentation and tutorials. Individual,
compatible projects, software and data are published by a variety of authors [8].

The Standard Input Format for Particle-In-Cell Codes (PICMI) proposed to address the challenge of simulation
design sharing by defining a common input layer that focuses on the physical description of a problem set [9].
Currently implemented as a Python API description, simulations can be designed flexibly with a well-known
programming language in the community.?

Standardization of inputs and outputs could also provide the basis for an integration into scientific data
portals to curate and re-use modeling data |10, |11} [12]: this can be raw and/or derived (output) data with
respective meta-data describing the physical scenario (input) and aide meta-studies and tests for new theories.

After successful initial integrations, ongoing activities need to aim for widened support in newly emerging,
complex analysis tools (from desktop to supercomputer). Also, code-coupling workflows are based on data
exchange and could benefit in many cases from data streaming, a technique that is used in tokamak modeling
(XGC/Gene) as well as particle-in-cell modeling (PIConGPU/GAPD). With a well-defined domain-specific
standardization, efforts of few, specialized people in the community are needed for adopting modern, low-level
computer science data libraries as they emerge. In parallel, modern educational materials are needed that
demonstrate and introduce such scientifically self-describing I/O to newly joining community members.

3.2 Workflows

One needed advance that connects scientific data and workflows is the need to be able to reproduce start-to-end
workflows. For example, many traditional file-based workflows need to be adopted to in situ workflows in order
to bridge data production rate and storage capability gaps. But a simulation pipeline with in situ data analysis
components needs to be flexible for adopting use cases and re-playable from the start, if raw data exceeds the
long-term storage capabilities. Consequently, the software and data roadmap strategies in the community need
to be as long-term as the machines and experiments which they model.

Ideally, workflows and components could be based on compatible, modular toolkits and libraries 5], [13].
Similar advances as start-to-end modeling workflows that have been demonstrated for XFEL facilities (e.g.
PaNOSC [14], SIMEX [15], LUME [16]) can be made, e.g. for plasma-based accelerators. As in the mentioned
examples, domain-agnostic workflow tools such as Fireworks [17], SnakeMake, Flux |1§] are readily available to
implement workflows. As many workflows will aim for optimization and exploration [19} |20], managing many
modeling runs with frameworks |21} 22| 23], especially in the context of machine learning algorithms [24], will
become essential. Again, standardization of workflows (interfaces, APIs, compatible modules, data) can lower
the entry burden significantly, ensure a close connection to long-term data curation, and foresee extensibility of
workflows over time.

1Similarly, event and detector data is successfully defined in packages of ROOT that is used by many independent software.
2Projects that define a common API, e.g. BLAS for linear algebra and MPI for multi-node message passing, use a similar
approach.
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