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Abstract:
The IceCube Neutrino Observatory is a cubic kilometer neutrino detector deployed at the South Pole, fo-
cused on detecting GeV to EeV neutrinos. IceCube measures neutrinos by detecting the optical Cherenkov
photons produced in neutrino-nucleon interactions. To study the the properties of incident neutrinos, Ice-
Cube employs numerous machine learning algorithms, including convolutional, recurrent, and graph neu-
ral networks for purposes of reconstruction, classification, and uncertainty estimation. In this letter, we
summarize the priorities for the collaboration moving forward, emphasizing the need to (1) cultivate ex-
pertise on how to adopt and evaluate ML methods to IceCube data, (2) develop ML algorithms which
leverage domain knowledge, and (3) integrate and utilize various ML accelerator technologies. These new,
more flexible methods coupled with increased computing capabilities will be important as upgrades to the
IceCube detector are deployed in the next decade, including the Icecube-Upgrade and IceCube-Gen2.

1Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube
2Full author list available at https://icecube.wisc.edu/collaboration/authors/snowmass21_icecube-gen2
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The IceCube Neutrino Observatory [1] is designed to measure neutrinos from GeV to EeV energies. Ice-
Cube does this by deploying a hexagonal grid of Digital Optical Modules (DOMs) along 86 vertical strings
deep in the glacier at South Pole. Each DOM contains a photomultiplier tube, and detects the Cherenkov
radiation from relativistic charged particles emitted during neutrino interactions. IceCube leverages ma-
chine learning for a variety of tasks to extract information about the incident neutrinos from these detected
photons—including reconstruction of energy and direction, classification of interaction type and neutrino
flavor, and uncertainty estimation.

IceCube will benefit from a strong community focus on keeping up to date with developments in ML
theory, ML applications and tools coming from industry and coordination of ML efforts across the various
frontiers. Current key goals in ML for IceCube are:

1. Expertise Cultivation: a continued effort to adopt and evaluate ML methods to IceCube data, both at
the detector level and at the analysis levels; user education on ML methods to make sure our students
and scientists are aware of the most efficient methods available for their particular problems;

2. Algorithms and Methods Development: development of new ML methods specific to the problems
in high-energy physics where techniques from industry applications do not apply (e.g. high-quality
simulation data for detectors is abundant and can be generated easily).

3. Hardware Integration: the integration of various ML accelerators, such as FPGAs, TPUs, and modern
GPU architectures in on-premises and cloud settings; integration of data pipeline/movement tools to
allow for efficient ML training.

IceCube adopts a variety of ML techniques in order to maximize scientific output. Traditional ML such
as tree-based learners and shallow neural networks are predominantly used for classification tasks. These
methods enhance the efficiency of event selections and as such constitute core contributions to many Ice-
Cube analyses. Other applications range from regression tasks (energy, stochasticity, and uncertainty es-
timation) to analysis method development [2; 3]. In contrast to maximum likelihood estimation (MLE)
techniques [4; 5; 6; 7], the application of deep learning-based techniques can enhance the capabilities of the
detector and usually provide a vastly superior reconstruction speed, and will thus become a crucial tool to
operate the detector, particularly for time critical applications such as the real-time alert system [8].

Expertise Cultivation

IceCube seeks to adopt and evaluate machine learning methods to IceCube data, both at the detector level and at the
analysis levels. This includes user education on ML methods to make sure our students and scientists are aware of the
most efficient methods available for their particular problems.

The physics of neutrino interactions is invariant under translation and rotation, and deep learning archi-
tectures utilize these symmetries. The majority of IceCube’s existing works focuses on the applications of
convolutional neural networks (CNNs). Applications for CNNs on IceCube include both neutrino interac-
tion reconstruction and event classification [9; 10; 11], with networks trained and optimized separately for
events in the 100 GeV-PeV range and the range below 200 GeV. The speed of these CNNs is several orders
of magnitude faster than previous MLE methods, while their performance is usually comparable or better.

However, CNN reconstructions require nontrivial preprocessing and conditioning of IceCube data. For-
matting IceCube’s hexagonal array into a uniform grid that a CNN expects requires a transformation to
a rectangular grid structure and/or reducing the number of strings used. Future detectors such as the
IceCube Upgrade and IceCube-Gen2 use more complicated geometries that would be difficult to adapt to
current networks. Furthermore, regardless of geometry, information is lost in transforming the data for use
by the network since summary statistics are used to account for all hits on an optical module in a time win-
dow or during the entire event. Thus, for both current and future applications, the collaboration has been
exploring other deep learning methods, for example, recurrent neural networks (RNNs) and graph neural
networks (GNNs).

In RNNs, recurrent nodes are represented as time series, and as such are a natural representation of the
IceCube pulse data. This allows a pulse-based RNN to utilize the entire pulse series instead of relying on
summary variables as used in the previously described CNN approach. An alternative approach utilizes
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a series of event “snapshots” by accumulating the measured charge at each DOM within certain time win-
dows. CNNs are used to extract features from these three dimensional snapshots which are then further
processed by an RNN. IceCube is also exploring other, new network architectures, such as “WaveNet”-like
algorithms based on 1D dilated causal convolutions [12].

Graphs are independent of spatial geometries, and so their abstract nature gives GNNs freedom to
handle irregular geometries and flexibility in weight propagation, which is useful for the more irregular
geometries of future detector upgrades. IceCube currently has several ongoing efforts based on GNN tools,
including particle identification, low energy event reconstruction, and uncertainty estimation. These net-
works operate on various IceCube graph representations with nodes as DOMs, singular signal pulses and
signal point clouds respectively, and are currently being developed using graph attention network (GAT)
[13; 14], graph convolutional network (GCN) [15] and dynamic graph CNN (DGCNN) [16; 17] frameworks
with comparable performance to current baseline reconstruction algorithms.

Algorithms and Methods Development

IceCube continues to focus on development of new ML methods specific to the problems in high-energy physics where
techniques from industry applications do not always directly apply.

One place where direct application of “industry” deep-learning methods often suffers is the difficulty
in including domain knowledge—for example, the linear scaling of light yield with deposited energy. One
approach IceCube is developing to tackle these issues is in the development of joint MLE/DL methods.
These methods aim to combine strengths of MLE and DL by utilizing neural networks in a maximum-
likelihood setting. A neural network is employed to approximate the computationally complex and often
intractable step of computing the likelihood. This is performed in an implicit likelihood-free approach based
on [18; 19] as well as an approach that explicitly defines the likelihood [10]. In this approach, the likelihood
can utilize gradients to speed up convergence and the Hessian may be used to approximate uncertainties
on the reconstruction.

Another unusual feature of applying ML in the HEP physics setting is the abundance of high-quality
Monte Carlo training samples. Often in industry applications, the size of training samples is relatively
small, or very costly to obtain [20]. For a detector like IceCube, large, statistically independent samples
can be produced, with careful control of systematic uncertainties such as the ice properties. This has the
potential to enable use of complex network architectures which would otherwise be intractable because of
limited training, testing, and validation samples.

Hardware Integration

IceCube aims to use and integrate various ML accelerators, such as FPGAs, TPUs, and modern GPU architectures
in on-premises and cloud settings, as well as integration of data pipeline/movement tools to allow for efficient ML
training.

The availability of new and faster hardware is important, especially as the size of available data sets
grow, and models grow in complexity. IceCube has experience leveraging distributed computing infras-
tructures to enhance on-premises resources, as demonstrated through a recent “Cloudburst” experiment on
the Open Science Grid, where nearly 52k GPUs across three continents were used simultaneously for Ice-
Cube simulation [21]. Use of dedicated hardware such as Tensor Processing Units (TPUs), especially those
in the cloud, have the potential to accelerate training by orders of magnitude [22]. As datasets grow, tools to
efficiently move data into the memory of GPUs will also be important—for example, by connecting GPUs
and FPGAs via PCIe [23], or through “GPUdirect”-like technology, where GPUs communicate directly with
Infiniband servers to load data, eliminating the CPU as an intermediary [24].

In conclusion, while machine learning tools are already a crucial part of the IceCube toolchain, with in-
creasing detector complexity and better understanding and calibration of the glacial ice and other detector
properties, ML-based methods will become indispensable tools for IceCube data analysis.
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