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Machine learning and neural networks have been used with great success in many areas of physics.
First attempts have been made to utilize these powerful computational tools for simulations of
particle accelerators. In this Letter of Interest, we briefly summarize the ongoing efforts and describe
planned uses of machine learning for optimization, uncertainty quantification and tuning assistance
in the realms of particle accelerator design and operation.

I MOTIVATION

Machine Learning (ML) has seen massive progress in
the past decades. Its successful application in computer
vision and the establishment of many software packages
that are widely available and standardized has led to at-
tempts to use ML in almost all fields of science. ML has
become a staple of modern computing and particle ac-
celerator physics should benefit from this progress. In
Section II we will briefly describe some of the ongoing
efforts to utilize ML in the simulation, design, optimiza-
tion, and tuning of particle accelerators. In Section III,
we outline some of the necessary steps forward to make
ML more accessible and applicable to particle accelerator
physics. Finally, we present IsoDAR as a project where
we plan to use ML to optimize the design, perform a
thorough error analysis, and assist with machine tuning.

II CURRENT EFFORTS

The current uses of ML in accelerator physics can
loosely be divided in several groups, either by application
or technique. Techniques are: surrogate models, com-
puter vision and Bayesian optimization (using Gaussian
processes or neural networks). Applications are then in
design optimization, (virtual) diagnostics, online tuning,
anomaly detection, error analysis, etc.

A. Surrogate models

Surrogate models can be built by training a neural net-
work on a smaller (compared to other optimization tech-
niques) set of high fidelity simulations (often particle-in-
cell) that coarsely maps out the hyperspace of possible in-
put parameters. Non-simulated sets of input parameters
can then be approximated by the surrogate model. This
can be highly useful for optimization and online feedback
about the accelerator. Some examples of successful use of
surrogate models in particle accelerator optimization are
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[1–4]. A speedup of one to several orders of magnitude
compared to conventional techniques has been observed
in these cases.

B. Computer vision

Arguably, the best established use of ML is image anal-
ysis using convolutional neural networks. These methods
can also be used in the analysis of beam diagnostic de-
vices like optical fibers, emittance scanners, and resid-
ual gas monitors or reconstruction of beam pulse struc-
ture [5].

C. Bayesian Optimization

Bayesian optimization is a tool for global optimization
with noisy evaluations. An example of successful use of
this technique is the tuning of SwissFEL [6, 7]. Another
example of Bayesian optimization, using Gaussian Pro-
cess models is given in [8] for the Linac Coherent Light
Source (LCLS).

III THE PATH FORWARD

A. Surrogate Models

Important steps forward to make surrogate models
widely usable have been identified in a separate LOI [9].
The main paths forward are finding the best practices for
various different accelerator systems and modeling needs
thereof, and developing a robust and flexible framework
for surrogate modeling.

B. Other

In the ML community, there is research ongoing to
create inverse ML models. If successful, a high fidelity
inverse model can replace complex and time consuming
multi objective optimisation. This would pave the way
for high fidelity and on-line based optimisation.

Creation of ML toolboxes geared towards particle ac-
celerators that are accessible, relatively easy to use and
compatible with the well-established simulation codes.
One such effort is ongoing at RadiaSoft [10].
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IV PLANNED APPLICATION OF ML IN
ISODAR

IsoDAR [11] is a proposed search for sterile neutrinos
using a decay-at-rest ν̄e source in close proximity to a
kiloton scale scintillator detector. In order for the exper-
iment to be decisive within 5 years, a primary proton
current of 10 mA cw is needed on target. The situ-
ation is further complicated by the necessity to install
the driver and target (ν̄e production) underground. A
compact cyclotron with RFQ injection [12] has been de-
signed, that accelerates H+

2 instead of protons to alleviate
space charge effects, utilizing vortex motion to keep the
bunches compact during acceleration [13]. This has to
be carefully simulated and all aspects of the system ben-
efit from optimization. The IsoDAR collaboration plans
to augment their design and simulation effort with ML
techniques similar to those described in [4]. Specifically,
these systems are going to be optimized using ML:

• Ion source LEBT and coupling to RFQ (proof-of-
principle for ML in IsoDAR).

• Cyclotron central region and RFQ matching to cy-
clotron.

• Cyclotron acceleration to 60 MeV/amu and vortex
motion

It is envisioned that surrogate models will then be avail-
able for online feedback during commissioning and tuning
up of the system. Feedback from measured beam data

will enhance these models, which will then be available
to the operators during production runs.

By augmenting ML models with data from real ma-
chine such as IsoDAR, the community at large will gain
understanding of fidelity and accuracy of such ML mod-
els. The non-trivial topology of the cyclotrons will serve
as a complex real world example (template). In this
unique setup, techniques such as transfer-learning can be
studied. Such a research project has the potential to lead
to an universal machine leaning inspired surrogate model
for a wide range of accelerators: linear accelerators, syn-
chrotrons and complex beam lines such as therapeutic
gantries.

V CONCLUSION

We have presented a small glimpse into the ongoing ef-
forts of incorporating ML into particle accelerator physics
through surrogate models, optimization, computer vi-
sion, and anomaly detection. Though these studies are
exciting and highly encouraging, there is a lot to be
learned about making these models stable and reliable,
as well as approachable also for scientists not well versed
in computational physics and ML. We have identified a
few paths forward to incorporate ML more into the day-
to-day work of accelerator design and operation. We be-
lieve, that a mid-scale project like IsoDAR could be a
test-bed for incorporating ML into the design process at
an early stage and use various aspects of it, all the way
through from the early prototype testing to running the
full machine.
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