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Here we outline some of the research in applying ML methods to field theory with an emphasis on the
MCMC sampling problem in lattice QCD where we have recently been working.

1 Machine learning for Markov chain Monte Carlo

Perturbative acceleration [1-3].

The ability to efficiently sample from high-dimensional distributions remains a widely-pursued goal across
scientific disciplines, with some noteable examples including particle physics, molecular dynamics, protein
folding, population genetics, neuroscience, epidemiology, economics, ecology, climate science, and astrophysics
& cosmology [4]. Recently, there has been a growing interest in developing probabilistic models that are
parameterized by neural networks, and while much progress has been made in this direction [5-10], mitigating
the critical slowing down (CSD) effect for lattice QCD remains a long-term goal of the community.

Since all lattice QCD simulations are performed at finite lattice spacing a, an extrapolation to the
continuum limit is required in order to accurately compute physical quantities of interest. More reliable
extrapolations can be done by simulating the theory at increasingly smaller lattice spacings while keeping
the physics constant. Unfortunately, this causes the correlation times of these quantities to diverge, indicating
that the continuum limit is a critical point of the theory.

Markov Chain Monte Carlo (MCMC) algorithms are known to encounter difficulties when simulating
theories near a critical point, an issue known as the critical slowing down of the algorithm [11]. This effect
can easily be seen in the topological charge Q € 7, whose auto-correlation time increases dramatically with
smaller lattice spacing as configurations tend to get ‘stuck’ in distinct topological sectors, preventing an
efficient exploration of the phase space. As a result, developing new sampling techniques that are able to
offer improvements in efficiency through a reduction of statistical autocorrelations are highly desired. In
this LOI, we describe some recent work in this area, and provide suggestions for possible future directions.
Generally speaking, MCMC methods are a class of algorithms that use Markov Chains to sample from a
target distribution p(x) that is often too complicated to sample from directly. Currently, the Hamiltonian
Monte Carlo (HMC) algorithm is the most widely used technique for generating gauge configurations in
lattice gauge theory and lattice QCD. We include below a brief overview of the approach, but refer the
interested reader to [12, 13] for more details and limitations.

We begin by introducing an auxiliary momentum variable v (normally distributed, independent of the
position ) in order to lift the target distribution onto a joint probability distribution p(z,v) in phase space.
The Markov Chain is then obtained by simulating a physical system governed by a Hamiltonian comprised
of kinetic and potential energy functions, ie. H(z,v) = U(z) + T(v). In particular, HMC operates by
sampling from the canonical distribution p(x,v) = exp(H(z,v)) = p(x)p(v) by solving the equations of
motion (2; = g—z'f, v; = _STZ) for a fixed period of time using a volume-preserving integrator. In practice
the integration is done in discrete steps introducing some numerical error. This then requires a Metropolis
accept/reject step to correct for the error.

As the lattice spacing decreases, sectors of different topology become separated by large potential bar-
riers, and simply moving along trajectories from the standard EOM become inefficient at moving between
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topological sectors. There are several ways to modify the EOM to help with this. One option is to incorporate
extra functions into the EOM that can deform the trajectories so that tunneling is more efficient. These extra
functions can be parameterized as neural networks that can be trained during sampling.

In the L2HMC algorithm [5], the authors propose a learned inference architecture that exhibits many
highly-desirable properties, including: fast mixing (i.e. the ability to quickly produce uncorrelated samples);
fast burn-in (i.e. rapid convergence to the target distribution); and the ability to mix across energy levels
and between modes.

This is done by introducing six new functions, S¢(0),T;(0), Q¢(6) for £ = x, v into the leapfrog equations,
each of which are parameterized by weights € in a deep neural network. These weights can then be trained
‘on the fly’ by minimizing a suitably chosen loss function. While the proposed modifications to the integrator
have the potential for violating the symplectic requirement of HMC, careful bookkeeping of the separate
Jacobian factors in the acceptance criteria ensures that the algorithm remains statistically exact, and will
(asymptotically) converge to the correct target distribution. The details of the augmented leapfrog equations
can be found in the original work [5], but it can be shown [11] that the proposed modifications may allow for
acceleration in low-density zones to facilitate mixing between modes. and better conditioning of the energy
landscape (e.g. by learning a diagonal inertia tensor).

In [5], the authors propose a loss function designed to reduce the mixing time. This is done by mini-
mizing the lag-one autocorrelation, or equivalently, by mazimizing the expected squared jumped distance
(ESJD) [14]. In R", this can be (roughly) understood as maximizing the expected value of the Euclidean
distance £(0) ~ E [A(£[€) - ||#" — ]3], between successive states in the chain.

While this choice of loss function works well enough in IR™, it is not immediately obvious how it should be
defined when working in the gauge groups of lattice QCD (e.g. U(1),SU(2),SU(3), etc). Additionally, the
generic network structure proposed in [5] is composed entirely of dense (fully-connected) layers, which are
not particularly well-suited for data with an inherent geometry, or that exist on a non-Riemannian manifold.
We have made progress towards dealing with both of these limitations in the case of a two-dimensional U(1)
gauge model defined on a square lattice with periodic boundary conditions [11, 15], but there remains much
to be done. An open source implementation of the LZHMC algorithm along with its modifications for dealing
with lattice gauge models is freely available [16].

2 Machine learning for sign problem

Path optimization for sign problem [17-21].

3 Explainable machine learning for studying physical systems

Explainable machine learning in lattice field theory, constructing observable characterizing the symmetric
phase of the 2+1 D Yukawa model [22].

4 Machine learning for improving and discovering new algorithms

Field theory researchers have studied neural networks for multigrid algorithms in gauge fields [23]. Both
algorithms in neural networks and multigrid in gauge fields have improved significantly since then, along
with the increases in computational power, neural networks started to show promises in algorithmic designs.
A type of shallow neural networks, the Boltzmann machine, originally designed to mimic physical systems,
give researchers different cluster Monte Carlo algorithms after training [24]. More researches in deep neural
networks and their application in algorithmic designs for lattice field theories will accelerate theoretical
computations.

5 Machine learning for theoretical advancement

Tensor renormalization group replaced by neural networks [25].
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