
Differentiable Simulators for HEP

L. Heinrich1, M. Kagan∗2, M. Mooney3, and K. Terao2

1CERN
2SLAC National Accelerator Laboratory

3Colorado State University

Thematic Areas: (check all that apply �/�)
� (CompF1) Experimental Algorithm Parallelization
� (CompF2) Theoretical Calculations and Simulation
� (CompF3) Machine Learning
� (CompF4) Storage and processing resource access (Facility and Infrastructure R&D)
� (CompF5) End user analysis
� (CompF6) Quantum computing
� (CompF7) Reinterpretation and long-term preservation of data and code
� (Other) [Please specify frontier/topical group]

∗Corresponding Author: Michael Kagan (makagan@slac.stanford.edu)

1

mailto:makagan@slac.stanford.edu


Introduction

Scientific simulators serve as a keystone for encapsulating knowledge acquired within scientific
domains. Simulators typically depend on parameters of an underlying theory or model and
provide a means to generate sample observation from a stochastic process involving latent or
unobserved random variables. However, the density of generated observations is not known and
in many cases is analytically intractable. Inference of model parameters and latent variables
using simulators is a major challenge, and techniques such as likelihood-free [1] and variational
inference [2] approach this challenge through learning an appropriate ML model from large
simulated datasets. Information may be lost in this process. The goal of the research direction
discussed in this LOI is to investigate a different approach to utilizing simulators by enabling the
use of exact differentiable simulators, e.g. simulators interfaced with automatic differentiation
frameworks [3], within ML and optimization pipelines for scientific data analysis. As gradient
descent drives a vast array of algorithms for optimization, training, and inference, utilizing a
simulator within such an ML pipeline requires it to produce differentiable predictions in order
to propagate gradients to other parts of the ML pipeline. In this way, a differentiable simulator
may act as a complex and dynamic reparameterization of its inputs that can be used seamlessly
with ML tools to produce powerful differentiable programs.

Interfacing with Automatic Differentiation

Differentiable simulators can be built using automatic differentiation (AD) frameworks [3]. AD
represents fundamental arithmetic operations and elementary functions within a computation
graph, and applies the chain rule to automatically compute high precision derivatives of any
order. Several frameworks exist to create or augment programs to enable AD in a variety
of computing languages. As modern deep learning frameworks are built upon AD, it will be
important to examine the AD implementation of simulators within these frameworks to facilitate
their use in harmony with ML algorithms. For simulators, a variety of considerations for the
AD implementation and interaction with ML tools should be studied, including interfacing or
porting simulation code to the ML framework language, dealing with the dynamic control flow
of simulators within AD computational graphs, and reducing additional latency incurred by
ML frameworks that are optimized for performing common ML operations but potentially not
for the simulators. More generally, it will be vital to understand how to control computational
costs in order to scale up the production and utilization for the large simulated datasets in HEP
applications.

Inference with Differentiable Simulators

From the standpoint of statistical modeling and ML, differentiable simulators serve as flexible
and precise models that map parameters and stochastic inputs to an experiment’s observation
space. The samples produced by these simulators are differentiable and well suited for gradient-
based optimization and learning. This research direction should explore how ML algorithms can
take advantage of the simulator differentiability. For example, experimental design optimization
and parameter tuning, differentiable simulators could enable the use of gradient descent for MLE
and MAP estimation, and adversarial optimization [4]. For parameter inference, differentiable
simulators could serve as a likelihood or decoder in variational inference, adversarially learned
inference [5], neural density estimation [6], or Hamiltonian Monte Carlo [7]. More generally, the
potential for differentiable simulators to improve the precision of inference strategies in inverse
problems should be explored.

2



Implementations in HEP Frontiers

The aim of this research direction is to explore the implementation and use of differentiable
state-of-the-art simulators for High Energy Physics applications. Examples of differentiable
HEP simulators that have begun to be explored include: (i) Simulation of matrix element
scattering amplitudes for colliders. Such simulators enable the evaluation and sampling of
particle configurations occurring in particle collisions. These differentiable simulators could
then applied in: collision event reconstruction, parameter inference, and ML-based density
estimation. (ii) Simulation of neutrino-nucleus/many-body intranuclear interaction modeling
and the response of liquid argon time projection chambers, for which analysis techniques are
still emergent despite their wide use in neutrino experiments. Such differentiable simulators
can be applied in: simulator tuning to match observed data and forward modeling to infer the
impact of parameter distributions to the physics output.

Summary

This LOI considers the investigation of differentiable scientific simulators for high energy physics,
as well as how to captialize on the capabilities of differentiable simulators in concert with ML
to tackle challenges in scientific data analysis such as tuning, optimization, and inference. This
research direction requires investigating how to augment scientific simulators within automatic
differentiation frameworks [3], and how to exploit the differentiable capability of these enhanced
simulators within ML pipelines.

3



References

[1] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based infer-
ence. Proceedings of the National Academy of Sciences, 2020.

[2] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14(4):1303–1347, 2013.

[3] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine
Learning Research, 18:1–43, 2018.

[4] Gilles Louppe, Joeri Hermans, and Kyle Cranmer. Adversarial variational optimization of
non-differentiable simulators. PMLR, 89:1438–1447, 2019.

[5] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin
Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv:1606.00704, 2016.

[6] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
arXiv:1912.02762, 2019.

[7] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics Letters B, 195(2):216 – 222, 1987.

4


