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Abstract: Rare event searches in dark matter and neutrino experiments share the unique challenge of iden-
tifying a few potential signal events from a much larger dataset. Future iterations of these experiments
will need to collaborate to develop new techniques for addressing the challenges from increasingly-complex
datasets. Machine learning (ML) methods are well-suited to many of these challenges, but require refine-
ment in some cases and entirely new approaches in others to meet these needs. Opportunities for develop-
ment include methods to increase reliability of ML techniques, through quantified uncertainties and human-
interpretable results; unsupervised anomaly finding for unexpected or difficult to model backgrounds; as well
as faster and more accurate simulations. Doing this well will require training of experts within this commu-
nity, through domain-specific workshops and courses, in addition to state-of-the-art tools and hardware.
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Introduction: Recent advances in Machine Learning (ML) have enabled sophisticated analyses of large
scientific datasets. The HEP community has successfully leveraged these advances to improve many aspects
of analysis including event reconstruction, particle identification, fast simulation, and triggering [1–3]. Simi-
lar approaches are gaining traction in the rare event search community and show promise in addressing some
of the challenges facing us moving forward. Work across collaborations is vital to discern the field-specific
advantages of ML, as well as to build confidence in and understanding of its results, so that it can be widely
and effectively used.

Existing dark matter (DM) and neutrino experiments have demonstrated improvements in background
rejection using simple neural networks and boosted decision trees [4, 5]. Deep learning techniques have also
been successfully employed for reconstruction of physical quantities, such as energy and position [6], as well
as particle identification [7, 8] and signal/background discrimination [9]. ML algorithms have also begun to
make their way into hardware, through their implementation on FPGAs for triggering [10]. Despite these
initial successes, using ML to its full potential will require addressing several challenges at the forefront of
scientific computing.

Uncertainties and Interpretability: Core among these challenges is the need to establish ML-based ap-
proaches that can match traditional analyses in their reliability. This is especially relevant for algorithms
utilizing low-level information, where building physical intuition about their inner workings is most difficult
and the fidelity of simulations is challenging to verify. Techniques to reduce reliance on simulation [11] and
demonstrate robustness against differences between simulation and data [12] are being explored, but must
be further developed and tested. Data-driven training sets provide the ultimate in reliability. New techniques
leveraging calibration data to generate such data sets would enable expansion of the domain of application
of ML in our field.

Beyond improvements in training, quantitative establishment of uncertainties in ML outputs is integral
to translating results to a final, rigorous statistical analysis. Additionally, tools to improve interpretability of
ML outputs can allow human analyzers to benefit from their insights, re-examining their assumptions about
what information is physically relevant. This emphasis on understanding both uncertainties and human-
interpretable insights distinguishes physics from industrial applications; truly pioneering work is necessary
to meet our goals.

Anomaly Finding and Events at Threshold: Rare event searches present a common computational chal-
lenge: identify a handful of possible “signal” events from several petabytes of background data. As these ex-
periments grow in size and complexity, the potential for unexpected backgrounds increases. While anomaly
detection methods are being explored in the accelerator physics context [13], their direct application to rare
event searches is often limited due to their reliance on larger sample sizes. Exploration of unsupervised
learning techniques for rare event searches is valuable here, as this class of algorithms does not require a
priori knowledge of each event topology. Similarly, anomaly finding algorithms can augment development
of traditional techniques by efficiently finding outliers in high-dimensional space, which may appear as a
result of a bug or unexpected corner case in simulation or reconstruction.

Machine-learning techniques can also be effective for the reconstruction of very-low energy events and
events close to the detector threshold, in which the available information is exceedingly sparse and statistical
fluctuations are predominant. Improvements in reconstruction of low-energy events have been demonstrated
in liquid xenon detectors [14, 15] and show promise for further study.

Simulations: Simulations are another area with strong potential for improvement from ML due to their
intensive use of computing resources. In particular, as analyses delve into use of raw detector-level infor-
mation, accurate simulation becomes both more challenging and more time-consuming. Generative models
have shown potential in this realm [16], with significantly-reduced computing requirements in the gener-
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ation stage, but remain relatively unexplored in the rare event community. An important open challenge
for this approach will be extending generation to event types which are not well-modeled (if trained using
simulation) or which are not well-represented in the underlying distribution (if trained using calibration data).

Tool Development and Training: More generally, gaining access to state-of-the-art software tools and
hardware resources specific to deep learning, such as clusters of graphical and tensor processing units, will
help ensure competitiveness with other related fields. As software and resources evolve, we must ensure our
experimental data remains compatible with them. This may require community development of shared tools,
following the example of software packages such as uproot [17]. Standardized datasets for rare event
searches, analogous to the MNIST database of handwritten digits in computer vision [18], can also help with
benchmarking of both algorithm performance and computing resources. The Noble Element Simulation
Technique (NEST) software is designed for efficient simulation of noble element detectors and is used by
multiple collaborations [19]; it could generate such shared datasets, enabling development of increasingly
sophisticated ML models with the incorporation of low-level information.

Lastly, algorithms currently used in the field are largely based on techniques established in the private
technology sector, while our unique problem space may lend itself to yet-unheard-of approaches. The de-
velopment of new algorithms, ideally in collaboration with ML experts outside the field, has the potential to
significantly improve performance on problems that do not readily map onto established paradigms.

To reach these goals, our field must begin training ML experts of our own. General ML resources are
readily available online, but are not as efficient as field-specific training. To address this, we recommend
dedicated ML workshops [20], where expertise can be shared through interactive tutorials, and promising
techniques in the field can be discussed. These would also provide opportunities for collaboration with
external experts. Development of physics-specific ML courses can also address this need.
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R. Turra, “scikit-hep/uproot: 3.12.0,”. https://doi.org/10.5281/zenodo.3952728.

[18] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”.
http://yann.lecun.com/exdb/mnist/.

[19] M. Szydagis, J. Balajthy, J. Brodsky, J. Cutter, J. Huang, E. Kozlova, B. Lenardo, A. Manalaysay, D. McKinsey,
M. Mooney, J. Mueller, K. Ni, G. Rischbieter, M. Tripathi, C. Tunnell, V. Velan, and Z. Zhao, “Noble element
simulation technique,”. https://doi.org/10.5281/zenodo.3905382.

[20] Dark-matter and Neutrino Computation Explored (DANCE) Machine Learning Workshop 2020. 2020.
https://indico.physics.lbl.gov/event/1192/.

http://arxiv.org/abs/1807.02876
http://dx.doi.org/10.1016/j.physrep.2019.11.001
http://arxiv.org/abs/1709.04464
http://arxiv.org/abs/1709.04464
http://dx.doi.org/10.1146/annurev-nucl-101917-021019
http://dx.doi.org/10.1146/annurev-nucl-101917-021019
http://arxiv.org/abs/1806.11484
http://dx.doi.org/10.1103/PhysRevC.93.035501
http://dx.doi.org/10.1103/PhysRevLett.112.241302
http://arxiv.org/abs/1402.7137
http://dx.doi.org/10.1088/1748-0221/13/08/p08023
http://dx.doi.org/10.1088/1748-0221/13/08/p08023
http://dx.doi.org/10.1088/1748-0221/11/09/P09001
http://arxiv.org/abs/1604.01444
http://dx.doi.org/10.1088/1748-0221/12/03/P03011
http://arxiv.org/abs/1611.05531
http://arxiv.org/abs/1611.05531
http://dx.doi.org/10.1007/s41781-019-0027-2
http://arxiv.org/abs/1904.08986
http://dx.doi.org/10.1103/PhysRevD.98.011502
http://dx.doi.org/10.1088/1748-0221/13/11/p11020
http://dx.doi.org/10.1103/PhysRevLett.121.241803
http://arxiv.org/abs/1805.02664
http://dx.doi.org/10.1088/1361-6471/ab8e94
http://arxiv.org/abs/1911.09210
http://dx.doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
https://doi.org/10.5281/zenodo.3952728
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.5281/zenodo.3905382
https://indico.physics.lbl.gov/event/1192/


Full Author List:

J. Aalbers,1 D.S. Akerib,2, 3 A. Alqahtani,4 S.K. Alsum,5 C.S. Amarasinghe,6 A. Ames,2, 3 P. An,7

S.J. Andaloro,8 T.J. Anderson,2, 3 N. Angelides,9 H.M. Araújo,10 J.E. Armstrong,11 M. Arthurs,6
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